Giáo án Đề 5 kiểm tra môn toán vào lớp 10

Câu 3: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc của mỗi ô tô.

Câu 4: Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F.

 a) Chứng minh tứ giác ACBD là hình chữ nhật.

 b) Chứng minh ∆ACD ∆CBE

 c) Chứng minh tứ giác CDFE nội tiếp được đường tròn.

 

doc4 trang | Chia sẻ: quynhsim | Lượt xem: 1079 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Đề 5 kiểm tra môn toán vào lớp 10, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 5 – TOÁN ÔN VÀO 10 – KEYS Câu 1: a) Thực hiện phép tính: b) Trong hệ trục tọa độ Oxy, biết đường thẳng y = ax + b đi qua điểm A( 2; 3 ) và điểm B(-2;1) Tìm các hệ số a và b. Câu 2: Giải các phương trình sau: a) x2 – 3x + 1 = 0 b) Câu 3: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc của mỗi ô tô. Câu 4: Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F. a) Chứng minh tứ giác ACBD là hình chữ nhật. b) Chứng minh ∆ACD ∆CBE c) Chứng minh tứ giác CDFE nội tiếp được đường tròn. d) Gọi S, S1, S2 thứ tự là diện tích của ∆AEF, ∆BCE và ∆BDF. Chứng minh: . Câu 5: Giải phương trình: KEYS Câu 1: a) b) Vì đường thẳng y = ax + b đi qua điểm A(2; 3) nên thay x = 2 và y = 3 vào phương trình đường thẳng ta được: 3 = 2a + b (1). Tương tự: 1 = -2a + b (2). Từ đó ta có hệ: . Câu 2: a) Giải phương trình: x2 – 3x + 1 = 0. Ta có: ∆ = 9 – 4 = 5 Phương trình có hai nghiệm: x1 = ; x2 = . b) Điều kiện: x 1. x(x + 1) – 2(x – 1) = 4 x2 – x – 2 = 0 . Đối chiếu với điều kiện suy ra phương trình đã cho có nghiệm duy nhất x = 2. Câu 3: Gọi vận tốc của ô tô thứ nhất là x (km/h). Suy ra vận tốc của ô tô thứ hai là: x – 10 (km/h) (Đk: x > 10). Thời gian để ô tô thứ nhất và ô tô thứ hai chạy từ A đến B lần lượt là (h) và (h). Theo bài ra ta có phương trình: Giải ra ta được x = 60 (thỏa mãn).Vậy vận tốc của ô tô thứ nhất là 60 km/h và ô tô thứ hai là 50 km/h. Câu 4: a) Tứ giác ACBD có hai đường chéo AB và CD bằng nhau và cắt nhau tại trung điểm của mỗi đường, suy ra ACBD là hình chữ nhật b) Tứ giác ACBD là hình chữ nhật suy ra: (1). Lại có sđ(góc tạo bởi tiếp tuyến và dây cung); sđ(góc nội tiếp), mà (do BC = AD)(2). Từ (1) và (2) suy ra ∆ACD ~ ∆CBE . c) Vì ACBD là hình chữ nhật nên CB song song với AF, suy ra: (3). Từ (2) và (3) suy ra do đó tứ giác CDFE nội tiếp được đường tròn. d) Do CB // AF nên ∆CBE ~ ∆AFE, suy ra: . Tương tự ta có . Từ đó suy ra: . Câu 5: Đk: x3 + 1 0 (1). Đặt: a = ; b = ,( a0; b>0) (2) a2 + b2 = x2 + 2. Khi đó phương trình đã cho trở thành: 10.ab = 3.(a2 + b2) a = 3b hoặc b = 3a. +) Nếu a = 3b thì từ (2) suy ra: = 3 9x2 – 10x + 8 = 0 (vô nghiệm). +) Nếu b = 3a thì từ (2) suy ra: 3 = 9x + 9 = x2 – x + 1 x2 – 10x – 8 = 0. Phương trình có hai nghiệm x1 = ; x2 = (thỏa mãn (1)). Vậy phương trình đã cho có hai nghiệm x1 = và x2 = . Lời bình: Câu IV 1) Để chứng minh đẳng thức (*) về diện tích các tam giác (chẳng hạn (*)) Bạn có thể nghĩ đến một trong ba cách sau : · Nếu ba tam giác tương ứng có một cạnh bằng nhau thì biến đổi (*) về đẳng thức các đường cao tương ứng h1, h2, h để chứng minh (chẳng hạn(*) Û h1 + h2 = h). · Nếu ba tam giác tương ứng có một đường cao bằng nhau thì biến đổi (*) về đẳng thức các cạnh tương ứng a1, a2, a để chứng minh (chẳng hạn(*) Û a1 + a2 = a). · Nếu hai trương hợp trên không xẩy ra thì biến đổi (*) về đẳng thức tỉ số diện tích để chứng minh (chẳng hạn(*) Û ). Thường đẳng thức về tỷ số diện tích tam giác là đẳng thức về tỉ số các cạnh tương ứng trong các cặp tam giác đồng dạng. 2) Trong bài toán trên, hai khả năng đầu không xảy ra. Điều đó dẫn chúng ta đến lời giải với các cặp tam giác đồng dạng. Câu V Để các bạn có cách nhìn khái quát, chúng tôi khai triển bài toán trên một bình diện mới. Viết lại = 3(x2 + 2) Û = 3[(x + 1) + x2 - x + 1) (1) Phương trình (1) có dạng a.P(x) + b.Q(x) + = 0 (a ¹ 0, b ¹ 0, g ¹ 0) (2) (phương trình đẳng cấp đối với P(x) và Q(x)). Đặt , (3) phương trình (1) được đưa về at2 + g t + b = 0. (4) Sau khi tìm được t từ (4), thể vào (3) để tìm x.

File đính kèm:

  • docDE 5 TOAN ON VAO 10 KEYS.doc