Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Sở GD&ĐT Thái Nguyên - Năm học 2019-2020 (Có đáp án)

Câu 9. Cho tam giác ABC( AB< AC) có ba góc nhọn nội tiếp đường tròn (O). Lấy các điểm P, Q lần lượt thuộc các cung nhỏ AC, AB sao cho BP vuông góc với AC, CQ vuông góc với AB. Gọi I, J lần lượt là giao điểm của PQ với AB và AC. Chứng minh IJ.AC = AI.CB.

docx5 trang | Chia sẻ: Băng Ngọc | Ngày: 19/03/2024 | Lượt xem: 7 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Sở GD&ĐT Thái Nguyên - Năm học 2019-2020 (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
UBND TỈNH THÁI NGUYÊN SỞ GIÁO DỤC VÀ ĐÀO TẠO THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2019 – 2020 MÔN: TOÁN Thời gian làm bài 120 phút không kể thời gian giao đề ( Đề thi gồm 01 trang, 10 câu, mỗi câu 01 điểm ) Câu 1. Chứng minh A = là một số nguyên Câu 2. Rút gọn biểu thức với a 1 Câu 3. Tìm các giá trị của m để hàm số y = (2m – 1) x2 đạt giá trị lớn nhất bằng 0 tại x = 0. Câu 4. Cho hàm số y = ax + b với a 0. Xác định các hệ số a, b biết đồ thị hàm số song song với đường thẳng y = 2x + 2019 và cắt trục tung tại điểm có tung độ là 2020. Câu 5. Một địa phương cấy 10ha giống lúa loại I và 8ha giống lúa loại II. Sau một mùa vụ, địa phương đó thu hoạch và tính toán sản lượng thấy: + Tổng sản lượng của hai giống lúa thu về là 139 tấn; + Sản lượng thu về từ 4ha giống lúa loại I nhiều hơn sản lượng thu về từ 3ha giống lúa loại II là 6 tấn. Hãy tính năng suất lúa trung bình ( đơn vị: tấn/ ha) của mỗi loại giống lúa. Câu 6. Cho phương trình x2 – 4x + m – 1 = 0. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x12 + x22 -10x1x2 = 2020. Câu 7. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 10cm, AH = 6cm, Tính độ dài các cạnh AC, BC của tam giác ABC. Câu 8. Cho đường tròn (O). Đường thẳng d tiếp xúc với đường tròn ( O) tại A. Trên d lấy một điểm B( B khác A), vẽ đường tròn (B, BA) cắt đường tròn ( O) tại điểm C ( C khác A). Chứng minh BClà tiếp tuyến của (O). Câu 9. Cho tam giác ABC( AB< AC) có ba góc nhọn nội tiếp đường tròn (O). Lấy các điểm P, Q lần lượt thuộc các cung nhỏ AC, AB sao cho BP vuông góc với AC, CQ vuông góc với AB. Gọi I, J lần lượt là giao điểm của PQ với AB và AC. Chứng minh IJ.AC = AI.CB. Câu 10. Từ điểm A nằm ngoài đường tròn ( O) kẻ các tiếp tuyến AB, AC đến đường tròn ( B, C là tiếp điểm ). Gọi H là giao điểm của OA và BC. Chứng minh OB2 = OH. OA EF là một dây cung của (O) đi qua H sao cho A, E, F không thẳng hàng. Chứng minh bốn điểm A, E, O, F nằm trên cùng một đường tròn. ----Hết--- ĐÁP ÁN Câu 1. Chứng minh Vậy A là một số nguyên Câu 2. ( do a 1) Câu 3. Hàm số y = (2m – 1) x2 đạt giá trị lớn nhất tại x = 0. Khi 2m – 1 < 0 ↔ m < Câu 4. ( d): y = ax + b ( a 0) song song với (∆): y = 2x + 2019 → a = 2 (1) b 2019 + (d) cắt Oy tại điểm có tung độ 2020 → b = 2020 (2) Từ (1), (2) ta có: y = 2x + 2020 Câu 5. Gọi năng suất lúa trung bình của loại I là x ( 0 < x < 139) Gọi năng suất lúa trung bình của loại II là y (0 < y < 139) Theo bài ra ta có hệ phương trình 10x+8y=1394x-3y=6 ↔ x =7,5y=8 Vậy năng suất lúa trung bình của loại I là: 7,5 (tấn / ha) Vậy năng suất lúa trung bình của loại II là: 8 (tấn / ha) Câu 6. Cho phương trình x2 – 4x + m – 1 = 0. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x12 + x22 -10x1x2 = 2020. ∆’ = 4-m-1 = 3-m + PT có 2 nghiệm ↔ ∆’ ≥ 0 ↔ 3-m ≥ 0 ↔ m ≤ 3 + Theo viet x1 +x2=4x1x2 =m+1 (1) Mà: x12 + x22 -10x1x2 = 2020 ↔ (x1 + x2 )2 - 12 x1x2 -2020 = 0 (2) Thế (1) vào (2) ↔ 16 - 12(m+1) – 2020 = 0 ↔ -12m - 2016 = 0 ↔ m = -168 ( t/m) Câu 7. Ta có: Ta có: AH.BC = AB.AC 6.BC = 10. BC = Câu 8. Theo bài ra ta có AB là tiếp tuyến của đường tròn (O) → ABOA (1) Xét hai tam giác ∆OAB và ∆OCB có: OA = OC BA = BC → ∆OAB = ∆OCB ( c.c.c) (2) OB chung Từ (1), (2) suy ra OAB = OCB (=900) hay OCB =900 nên BCOC Vậy BClà tiếp tuyến của (O) Câu 9. Tứ giác HECB nội tiếp đường tròn ( vì 2 đỉnh liên tiếp nhìn 1 cạnh cố định dưới góc vuông) → B1 = C1 ( Nội tiếp chắn cung HE) → ACB = 12 AIP = 12() = 12 (vì ) →ACB = AIP Xét tam giác ∆AIJ và ∆ ACB Có A chung ACB = AIP (cmt) Vậy ∆AIJ và ∆ ACB (g.g) → AIAC = IJCB → IJ.AC = AI.CB Câu 10. a. Xét tam giác ∆OBA và ∆OHB có: O chung H = B = 900 → ∆OBA ~ ∆OHB → OBOH = OAOB → OB2 = OH. OA b. theo cmt: OB2 = OH. OA → OE2 = OH. OA → OEOH = OAOE lại có: HOE= AOE →∆OEH ~ ∆OAE →OAE= OEF ( 1) Vì ∆OEF cân nên: OFE= OEF (2) Từ (1), (2) suy ra: OAE=OFE ( hai đỉnh liên tiếp bằng nhau cùng nhìn dưới cạnh cố định OE) → Tứ giác OEAF nội tiếp đường tròn Vậy bốn điểm A, E, O, F nằm trên cùng một đường tròn

File đính kèm:

  • docxde_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_so_gddt_thai_nguy.docx
Giáo án liên quan