Kì thi tuyển sinh lớp 10 thpt năm học 2012-2013 môn : toán thời gian làm bài: 120 phút (không kể thời gian giao đề)

Câu 4:(1,5 điểm)

 Hai xe khởi hành cùng một lúc đi từ địa điểm A đến địa điểm B cách nhau 100km. Xe thứ nhất chạy nhanh hơn xe thứ hai 10km/h nên đã đến B sớm hơm 30 phút, Tính vận tốc mỗi xe.

Câu 5:(3,5 điểm)

 Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.

 

doc2 trang | Chia sẻ: quynhsim | Lượt xem: 852 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Kì thi tuyển sinh lớp 10 thpt năm học 2012-2013 môn : toán thời gian làm bài: 120 phút (không kể thời gian giao đề), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀOTẠO QUẢNG TRỊ ĐỀ CHÍNH THỨC KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 MÔN : TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1:(2 điểm) 1.Rút gọn các biểu thức (không dùng máy tính cầm tay): a) 2- b) , với a0,a1 2.Giải hệ phương trình (không dùng máy tính cầm tay): Câu 2:(1,5 điểm) Gọi x1, x2 là hai nghiệm của phương trình .Không giải phương trình, tính giá trị các biểu thức sau: a, x1 + x2 b, c, Câu 3:(1,5 điểm) Trên mặt phảng tọa độ, gọi (P) là đồ thị hàm số a, Vẽ (P) b, Tìm tọa độ giao điểm của (P) và đường thẳng d: y = -2x+3 Câu 4:(1,5 điểm) Hai xe khởi hành cùng một lúc đi từ địa điểm A đến địa điểm B cách nhau 100km. Xe thứ nhất chạy nhanh hơn xe thứ hai 10km/h nên đã đến B sớm hơm 30 phút, Tính vận tốc mỗi xe. Câu 5:(3,5 điểm) Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K. Chứng minh tứ giác PDKI nội tiếp đường tròn. Chứng minh CI.CP = CK.CD Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB. Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.

File đính kèm:

  • docDE TOAN THI THU VAO 10 QUANG TRI 2013.doc
Giáo án liên quan