Giáo án môn Toán lớp 12 - Tiết 25: Hệ toạ độ trong không gian (tiếp)

I. MỤC TIÊU

 Qua bài học sinh cần nắm được:

 1. Kiến thức

 - Biểu thức toạ độ của tích vô hướng.

 - Ứng dụng của tích vô hướng để tính độ dài của một vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ trong không gian.

 2. Kỹ năng

 - Rèn luyện kỹ năng tính tích vô hướng, ứng dụng tính diện tích tam giác, diện tích hình bình hành, tính thể tích hình hộp và tìm vectơ vuông góc với hai vectơ không cùng phương cho trước.

 3. Tư duy

 - Rèn luyện tư duy lôgic suy luận có lý trong việc gải các bài toán liên quan đến tính tích vô hướng của hai vectơ. Bồi dưỡng và phát triển tư duy.

 4. Thái độ

- Nhiệt tình, chủ động chiếm lĩnh kiến thức mới.

II. ĐỒ DÙNG DẠY HỌC

 

doc5 trang | Chia sẻ: quynhsim | Lượt xem: 388 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án môn Toán lớp 12 - Tiết 25: Hệ toạ độ trong không gian (tiếp), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
GIÁO ÁN TẬP HUẤN ỨNG DỤNG CÔNG NHỆ THÔNG TIN VÀO MÔN TOÁN CÁC TRƯỜNG THPT NĂM 2008-2009 Tiết 25: HỆ TOẠ ĐỘ TRONG KHÔNG GIAN (tiếp) Giáo viên: Bùi Mạnh Hùng Đơn vị: Trường THPT Co Mạ I. MỤC TIÊU Qua bài học sinh cần nắm được: 1. Kiến thức - Biểu thức toạ độ của tích vô hướng. - Ứng dụng của tích vô hướng để tính độ dài của một vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ trong không gian. 2. Kỹ năng - Rèn luyện kỹ năng tính tích vô hướng, ứng dụng tính diện tích tam giác, diện tích hình bình hành, tính thể tích hình hộp và tìm vectơ vuông góc với hai vectơ không cùng phương cho trước. 3. Tư duy - Rèn luyện tư duy lôgic suy luận có lý trong việc gải các bài toán liên quan đến tính tích vô hướng của hai vectơ. Bồi dưỡng và phát triển tư duy. 4. Thái độ - Nhiệt tình, chủ động chiếm lĩnh kiến thức mới. II. ĐỒ DÙNG DẠY HỌC 1. Chuẩn bị của giáo viên: -Phấn màu, máy tính, máy chiếu, bảng chiếu 2. Chuẩn bị của học sinh: - Đọc bài trước ở nhà và xem lại các kiến thức ở lớp 10. III. PHƯƠNG PHÁP GIẢNG DẠY - Đàm thoại, gợi mở, đan xen hoạt động nhóm. IV. TIẾN TRÌNH BÀI HỌC 1.Ổn định tổ chức 2. Kiểm tra bài cũ (5 phút) *) Câu hỏi: 1) Cho ba vec tơ: Tính toạ độ của vectơ 2) Trong không gian Oxyz cho A(1;2;3), B(2;1;2), C(-3;3;1) Tìm toạ độ trọng tâm của tam giác ABC. *) Đáp án: 1) Ta có: 2) Toạ độ trọng tâm G của tam giác ABC được xác định bởi công thức 3. Bài mới: “ Tích vô hướng” Hoạt động 1 (7 phút): Hình thành cho học sinh nắm được công thức của tích vô hướng của hai vectơ trong không gian. Hoạt động của GV Hoạt động của HS Trình chiều Giáo viên đưa ra bài toán. -Chia lớp thành 4 nhóm thảo luận theo các câu hỏi sau: ?1:Biểu diễn vectơ theo các vectơ đơn vị . ?2: Tính biểu thức: , dựa vào tính chất của các vectơ đơn vị để rút gọn. -Gọi đại diện một nhóm lên trình bày lời giải trên. -Giáo viên nhấn mạnh công thức vừa tìm được chính là công thức tính tích vô hướng của hai vectơ trong không gian (cho học sinh nhận xét công thức trên có khác gì so với công thức tích vô hướng của hai vectơ trong mặt phẳng). - Yêu cầu học sinh nêu công thức tính tích vô hướng của hai vectơ trong không gian. - Ghi chép đề bài. - Tiến hành thực hiện công việc theo hướng dẫn của giáo viên. - Dựa vào công thức nhận xét. - Trả lời câu hỏi của giáo viên. III. TÍCH VÔ HƯỚNG 1. Biểu thức toạ độ của tích vô hướng Bài toán: Trong không gian Oxyz; cho hai vectơ Tính tích vô hướng của hai vectơ trên. Giải: Ta có: Khi đó: Vì nên: Định lí: Trong không gian Oxyz, tích vô hướng của hai vectơ được xác định bởi công thức Hoạt động 2 (8 phút): Hướng dẫn học sinh nắm được phần ứng dụng toạ độ của tích vô hướng của hai vectơ Hoạt động của GV Hoạt động của HS Trình chiều Giáo viên đặt vấn đề dùng biểu thức toạ độ của tích vô hướng để xác định: - Độ dài của một vectơ. - Khoảng cách giữa hai điểm. - Góc giữa hai điểm. -GV đưa ra câu hỏi: Dựa vào công thức trên cho biết khi nào thì hai vectơ vuông góc? -Nghiên cứu sách giáo khoa, dựa vào biểu thức toạ độ của tích vô hướng của hai vectơ để suy ra phần cần tìm hiểu. -HS dựa vào công thức góc giữa hai vectơ suy nghĩ và trả lời. 2. Ứng dụng: a) Độ dài của một vec tơ: Cho vectơ khi đó độ dài của vectơ có công thức: b) Khoảng cách giữa hai điểm. Trong không gian cho hai điểm A(xA;yA;zA), B(xB;yB;zB). Khi đó khoảng cách giữa hai điểm A và B chính là độ dài vectơ . Do đó ta có: c) Góc giữa hai vectơ. Gọi là góc giữa hai vectơ với . Khi đó: Chú ý: Ta có: Hoạt động 3 (20 phút): Củng cố kiến thức. Hoạt động thành phần1(5 phút) Hoạt động của GV Hoạt động của HS Trình chiều - Yêu cầu một học sinh đọc . - Chia lớp thành 4 nhóm thảo luận đưa ra kết quả. - Gọi đại diện một nhóm lên trình bày. - Gọi đại diện nhóm khác nhận xét, bổ sung. - GV đưa ra nhận xét cuối cùng, rút kinh nghiệm về kiến thức lẫn cách trình bày. -Thực hiện theo yêu cầu của giáo viên. - Vận dụng những kiến thức đã học ở các tiết trước và kiến thức vừa học để trao đổi thảo luận đưa ra kết quả. : Với hệ toạ độ Oxyz trong không gian, cho Hãy tính Hoạt động thành phần 2 (7 phút) Hoạt động của GV Hoạt động của HS Trình chiều - Đưa ra bài tập sau. - Chia lớp thành 4 nhóm thảo luận đưa ra kết quả. - GV có thể hướng dẫn học sinh bằng các câu hỏi sau: ?: Góc A tù nhận xét về dấu của cosA? Áp dụng công thức tính góc của hai vectơ suy nghĩ trả lời. ?: Muốn tính chu vi của tam giác ta nên làm thế nào? ? Để tam giác MBC vuông tại M thì có nhận xét gì về tích vô hướng của hai vectơ ? - Gọi đại diện một nhóm lên trình bày. - Gọi đại diện nhóm khác nhận xét, bổ sung. - GV đưa ra nhận xét cuối cùng, rút kinh nghiệm về kiến thức lẫn cách trình bày. -Thực hiện theo yêu cầu của giáo viên. - Vận dụng những kiến thức đã học ở các tiết trước và kiến thức vừa học để trao đổi thảo luận đưa ra kết quả. Bài tập củng cố: Cho tam giác ABC có A(2;0;1), B(1;-1;2), C(2;3;1). a) Chứng minh tam giác ABC có là góc tù. b) Tính chu vi tam giác ABC. c) Tìm sao cho tam giác MBC vuông tại M. Hoạt động thành phần 3 (8 phút) Hoạt động của GV Hoạt động của HS Trình chiều -Phát phiếu học tập số 5. - Chia lớp thành 4 nhóm thảo luận đưa ra kết quả. - Gọi đại diện một nhóm lên trình bày. - Gọi đại diện nhóm khác nhận xét, bổ sung. - GV đưa ra nhận xét cuối cùng, rút kinh nghiệm về kiến thức lẫn cách trình bày. -Thực hiện theo yêu cầu của giáo viên. - Vận dụng những kiến thức đã học ở các tiết trước và kiến thức vừa học để trao đổi thảo luận đưa ra kết quả. Phiếu học tập số 5 Trong không gian cho ba điểm A(xA;yA;zA), B(xB;yB;zB), B(xC;yC;zC). Hãy tìm: 1. Tích vô hướng của hai vectơ 2. Xác định độ dài của hai vectơ trên. 3. Xác định khoảng cách giữa hai điểm A, B và góc giữa hai vectơ . Hoạt động 4: Củng c ố toàn bài (5 phút) - Em hãy cho biết nội dung chính của bài này? - Hướng dẫn học sinh làm bài tập 3,4 trang 68-SGK. - Yêu cầu học sinh mục IV trang 66 SGK.

File đính kèm:

  • docTiết 25 - Hệ trục toạ độ.doc