Giáo án Hình học 8 - Mai Văn Hiển - Tiết 70: Ôn tập cuối năm

I- MỤC TIÊU BÀI DẠY:

- GV giúp HS nắm chắc kiến thức của cả năm học

- Rèn luyện kỹ năng chứng minh hình và tính diện tích xung quanh, thể tích các hình . Kỹ năng quan sát nhận biết các yếu tố của các hình qua nhiều góc nhìn khác nhau. Kỹ năng vẽ hình không gian.

- Giáo dục cho HS tính thực tế của các khái niệm toán học.

II- PHƯƠNG TIỆN THỰC HIỆN:

- GV: Hệ thống hóa kiến thức của cả năm học. Bài tập

- HS: Công thức tính diện tích, thể tích các hình đã học - Bài tập

 

doc3 trang | Chia sẻ: tuandn | Lượt xem: 1422 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Hình học 8 - Mai Văn Hiển - Tiết 70: Ôn tập cuối năm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:18/5/2009 Ngày giảng:22/5/2009 c Tiết 70 : ôn tập cuối năm I- Mục tiêu bài dạy: - GV giúp HS nắm chắc kiến thức của cả năm học - Rèn luyện kỹ năng chứng minh hình và tính diện tích xung quanh, thể tích các hình . Kỹ năng quan sát nhận biết các yếu tố của các hình qua nhiều góc nhìn khác nhau. Kỹ năng vẽ hình không gian. - Giáo dục cho HS tính thực tế của các khái niệm toán học. ii- phương tiện thực hiện: - GV: Hệ thống hóa kiến thức của cả năm học. Bài tập - HS: Công thức tính diện tích, thể tích các hình đã học - Bài tập Iii- tiến trình bài dạy: Hoạt động của GV Hoạt động của HS Kiến thức cơ bản của kỳ II 1. Đa giác - diện tích đa giác - Định lý Talét : Thuận - đảo - Tính chất tia phân giác của tam giác - Các trường hợp đồng dạng của 2 tam giác - Các TH đồng dạng của 2 tam giác vuông + Cạnh huyền và cạnh góc vuông + = k ; = k2 2. Hình không gian - Hình hộp chữ nhật - Hình lăng trụ đứng - Hình chóp đều và hình chóp cụt đều - Thể tích của các hình *HĐ2: Chữa bài tập Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.Chứng minh: a) b) HE.HC = HD.HB c) H, M, K thẳng hàng. d) Tam giác ABC phải có thêm điều kiện gì thì tứ giác BHCK là hình thoi? Là hình chữ nhật? Để CM ta phải CM gì ? Để CM: HE. HC = HD. HB ta phải CM gì ? Để CM: H, M, K thẳng hàng ta phải CM gì ? Tứ giác BHCK là hình bình hành Hình bình hành BHCK là hình thoi khi nào ? Hình bình hành BHCK là hình chữ nhật khi nào ? 1) Chữa bài 3/ 132 - GV: Cho HS đọc kỹ đề bài - Phân tích bài toán và thảo luận đến kết quả Giải Ta có: BHCK là HBH Gọi M là giao điểm của 2 đường chéo BC và HK a) BHCK là hình thoi nên HM BC vì : AH BC nên HM BC vậy A, H, M thẳng hàng nên ABC cân tại A b) BHCK là HCN BH HC CH BE BH HC H, D, E trùng nhau tại A Vậy ABC vuông cân tại A 2) Chữa bài 6/133 Kẻ ME // AK ( E BC) Ta có: => KE = 2 BK => ME là đường trung bình của ACK nên: EC = EK = 2 BK BC = BK + KE + EC = 5 BK => ( Hai tam giác có chung đường cao hạ từ A) 3) Bài tập 10/133 SGK Để CM: tứ giác ACC’A’ là hình chữ nhật ta CM gì ? - Tứ giác BDD’B’ là hình chữ nhật ta CM gì ? Cho HS tính Sxq; Stp ; V hình đã cho ? - HS nêu cách tính diện tích đa giác -Nêu Định lý Talét : Thuận - đảo - HS nhắc lại 3 trường hợp đồng dạng của 2 tam giác ? - Các trường hợp đồng dạng của 2 tam giác vuông? + Cạnh huyền và cạnh góc vuông A E D H B M C K HS vẽ hình và chứng minh. a)Xét và có: chung => (g-g) b) Xét và có : ( đối đỉnh) =>( g-g) => => HE. HC = HD. HB c) Tứ giác BHCK có : BH // KC ( cùng vuông góc với AC) CH // KB ( cùng vuông góc với AB) Tứ giác BHCK là hình bình hành. HK và BC cắt nhau tại trung điểm của mỗi đường. H, M, K thẳng hàng. d) Hình bình hành BHCK là hình thoi úHM BC. Vì AH BC ( t/c 3 đường cao) =>HM BC ú A, H, M thẳng hàng úTam giác ABC cân tại A. *Hình bình hành BHCK là hình chữ nhật ú ú ( Vì tứ giác ABKC đã có ) ú Tam giác ABC vuông tại A. - HS đọc bài toán - HS các nhóm thảo luận A - Nhóm trưởng các nhóm trình bày lơì giải D E H M B C A B C M K E D a)Xét tứ giác ACC’A’ có: AA’ // CC’ ( cùng // DD’ ) AA’ = CC’ ( cùng = DD’ ) Tứ giác ACC’A’ là hình bình hành. Có AA’ (A’B’C’D’)=> AA’ A’C” =>góc . Vậy tứ giác ACC’A’ là hình chữ nhật. CM tương tự => BDD’B’ là hình chữ nhật. b) áp dụng ĐL Pytago vào tam giác vuông ACC’ ta có: AC’2 = AC2 +CC’2 = AC2 +AA’2 Trong tam giác ABC ta có: AC2 = AB2 +BC2 = AB2 + AD2 Vậy AC’2 = AB2 + AD2+ AA’2 c) Sxq= 2. ( 12 + 16 ). 25 = 1400 ( cm2 ) Sđ= 12 . 16 = 192 ( cm2 ) Stp= Sxq + 2Sđ = 1400 + 2. 192 = 1784 ( cm2) V = 12 . 16 . 25 = 4800 ( cm3 ) 4: Củng cố - GV: nhắc lại 1 số pp chứng minh - Ôn lại hình không gian cơ bản: + Hình hộp chữ nhật + Hình lăng trụ + Chóp đều + Chóp cụt đều 5: Hướng dẫn về nhà - Ôn lại toàn bộ cả năm -Làm các BT: 1,2,3,4,5,6,7,9/ SGK

File đính kèm:

  • doch8 t70.doc