Giáo án Giải toán lớp 11 trên máy tính cầm tay
1. Biểu thức số
2. Hàm số
3. Phương trình lượng giác
4. Tổ hợp
5. Xác suất
6. Dãy số và giới hạn của dãy số
7. Hàm số liên tục
8. Đạo hàm và giới hạn của hàm số
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Giải toán lớp 11 trên máy tính cầm tay, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức số 2. Hàm số 3. Phương trình lượng giác 4. Tổ hợp 5. Xác suất 6. Dãy số và giới hạn của dãy số 7. Hàm số liên tục 8. Đạo hàm và giới hạn của hàm số1 giải toán lớp 11 trêN máY tính CầM TAY Quy ước. Khi tính gần đúng, chỉ ghi kết quả đã làm tròn với 4 chữ số thập phân. Nếu là số đo góc gần đúng tính theo độ, phút, giây thì lấy đến số nguyên giây.2 giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức sốBài toán 1.1. Tính giá trị của các biểu thức sau:A = cos750cos150; B = cos(2π/9) cos(4π/9) cos(8π/9) ; C = 1/sin180-1/sin540 +tan90-tan270-tan630+tan810. VINACALKQ: A = 1/4; B = - 1/8; C = 6.3 giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức sốBài toán 1.2. Tính gần đúng giá trị của các biểu thức sau:A = cos750 sin150; B = sin750cos150; C = sin(5π/24) sin(π/24).VINACALKQ: A ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795.4 giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức sốBài toán 1.3. Tính gần đúng giá trị của biểu thức A = 1 + 2cosα + 3cos2α + 4cos3α nếu α là góc nhọn mà sinα + cosα = 0,5.sinα = 0,5 - cosα, 1 - cos2α = 0,25 - cosα + cos2α2x2 - x - 0,75 = 0, 0 ≤ x = cosα ≤ 1, x ≈ 0,911437827A = 1+ 2x + 3x2 + 4x3. VINACALKQ: A ≈ 8,3436.5 giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức sốBài toán 1.4. Cho góc nhọn α thoả mãn hệ thức sinα + 2cosα = 4/3. Tính gần đúng giá trị của biểu thứcS = 1 + sinα + 2cos2α + 3sin3α + 4cos4α.sinα = 4/3 - 2cosα 1 - cos2α = 16/9 - 16/3 cosα + 4cos2α5cos2α - 16/3 cosα + 7/9 = 06 giải toán lớp 11 trêN máY tính CầM TAY 1. Biểu thức sốBài toán 1.4. Cho góc nhọn α thoả mãn hệ thức sinα + 2cosα = 4/3. Tính gần đúng giá trị của biểu thứcS = 1 + sinα + 2cos2α + 3sin3α + 4cos4α.cosα1 ≈ 0,892334432; cosα2 ≈ 0,174322346α1 ≈ 0,468305481; α2 ≈ 1,395578792 VINACALKQ: S1 ≈ 5,8560; S2 ≈ 4,9135.7 giải toán lớp 11 trêN máY tính CầM TAY 2. Hàm sốBài toán 2.1. Tính gần đúng giá trị của hàm số f(x) = (2sin2x+(3+31/2)sinxcosx+(31/2-1)cos2x)/(5tanx-2cotx+sin2(x/2)+cos2x+1)tại x = - 2; π/6; 1,25; 3π/5.KQ: f(-2) ≈ 0,3228; f(π/6) ≈ 3,1305; f(1,25) ≈ 0,2204; f(3π/5) ≈ - 0,0351.8 giải toán lớp 11 trêN máY tính CầM TAY 2. Hàm sốBài toán 2.2. Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm sốf(x) = cos2x + 31/2 cosx - 21/2. f(x) = 2cos2x - 1 + 31/2 cosx - 21/2g(t) = 2t2 + 31/2 t - 1 - 21/2, - 1 ≤ t = cosx ≤ 1g’(t) = 4t + 31/2, - 1≤ t ≤ 1g’(t) = 0 t = - 31/2/4 9 giải toán lớp 11 trêN máY tính CầM TAY 2. Hàm sốBài toán 2.2. Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm sốg(-1) ≈ - 2,14626437; g(1) ≈ 1,317837245; g(-31/2/4) ≈ - 2,789213562KQ: max f(x) ≈ 1,3178; min f(x) ≈ - 2,7892.10 giải toán lớp 11 trêN máY tính CầM TAY 2. Hàm sốBài toán 2.3. Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm sốy = (sinx + 2cosx)/(3cosx + 4).3ycosx + 4y = sinx + 2cosxsinx + (2 - 3y)cosx = 4y12 + (2 - 3y)2 ≥ (4y)27y2 + 12y - 5 ≤ 0y1 ≈ 0,346592824; y2 ≈ - 2,060878539KQ: max f(x) ≈ 0,3466; min f(x) ≈ - 2,0609.11 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.1. Tìm nghiệm gần đúng của phương trình sinx = 2/3.sinA= 2/3x1 = A + k2πx2 = π - A + k2πKQ: x1 ≈ 0,7297 + k2π; x2 ≈ - 0,7297 + (2k + 1) π.12 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.2. Tìm nghiệm gần đúng (độ, phút, giây) của phương trình 2sinx - 4cosx = 3.sinx.1/51/2 - cosx.2/51/2 = 3/(2.51/2)cosA = 1/51/2, sinB = 3/(2.51/2) sin(x - A) = sinBx1 = A + B + k3600x2 = A + 1800 - B + k3600KQ: x1 ≈ 1050 33’ 55” + k3600; x2 ≈ 2010 18’ 16” + k3600.13 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.3. Tìm nghiệm gần đúng (độ, phút, giây) của phương trình 2sin2x + 3sinxcosx - 4cos2x = 0.2t2 + 3t - 4 = 0, tanx = tt1 ≈ 0,850781059; t2 ≈ - 2,350781059 KQ: x1 ≈ 400 23’ 26” + k1800; x2 ≈ - 660 57’ 20” + k1800.14 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.4. Tìm nghiệm gần đúng (độ, phút, giây) của phương trình sinx + cos2x + sin3x = 0.2sin2xcosx + cos2x = 04sinxcos2x + 1 - 2sin2x = 04t(1 - t2) + 1 - 2t2 = 0, - 1 ≤ t = sinx ≤ 1- 4t3 - 2t2 + 4t + 1 = 0 t1 ≈ 0,906803251; t2 ≈ - 1,171461541;t3 ≈ - 0,235341709 15 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.4. Tìm nghiệm gần đúng (độ, phút, giây) của phương trình sinx + cos2x + sin3x = 0.KQ: x1 ≈ 650 4’ 2” + k3600; x2 ≈ 1140 55’ 58” + k3600; x3 ≈ - 130 36’ 42” + k3600; x4 ≈ 1930 36’ 42” + k3600.16 giải toán lớp 11 trêN máY tính CầM TAY 3. Phương trình lượng giácBài toán 3.5. Tìm nghiệm gần đúng (độ, phút, giây) của phương trình sinxcosx - 3(sinx + cosx) = 1.(t2 - 1)/2 - 3t = 1, |t| ≤ 21/2sinx + cosx = tsin(x + 450) = t/21/2KQ: x1 ≈ - 640 9’ 28” + k3600; x2 ≈ 1540 9’ 28” + k3600.17 giải toán lớp 11 trêN máY tính CầM TAY4. Tổ hợpBài toán 4.1. Trong một lớp học có 20 học sinh nam và 15 học sinh nữ. Cần chọn 7 học sinh đi tham gia chiến dịch Mùa hè tình nguyện của đoàn viên, trong đó có 4 học sinh nam và 3 học sinh nữ. Hỏi có tất cả bao nhiêu cách chọn?KQ: C420C315 = 2204475. 18 giải toán lớp 11 trêN máY tính CầM TAY4. Tổ hợpBài toán 4.2. Có thể lập được bao nhiêu số tự nhiên chẵn mà mỗi số gồm 5 chữ số khác nhau?KQ: A49+ 4.8.A38 = 41A38 = 13776. 19 giải toán lớp 11 trêN máY tính CầM TAY 4. Tổ hợpBài toán 4.3. Có 30 câu hỏi khác nhau cho một môn học, trong đó có 5 câu hỏi khó, 10 câu hỏi trung bình và 15 câu hỏi dễ. Từ các câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau sao cho trong mỗi đề phải có đủ ba loại câu hỏi (khó, trung bình, dễ) và số câu dễ không ít hơn 2?KQ: C215(C25C110+C15C210)+C315C15C110 = 56875. 20 giải toán lớp 11 trêN máY tính CầM TAY 5. Xác suấtBài toán 5.1. Chọn ngẫu nhiên 5 số tự nhiên từ 1 đến 200. Tính gần đúng xác suất để 5 số này đều nhỏ hơn 50.KQ: P = C549/C5200 ≈ 0,0008. 21 giải toán lớp 11 trêN máY tính CầM TAY5. Xác suấtBài toán 5.2. Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Chọn ngẫu nhiên hai viên bi từ hộp bi đó. Tính xác suất để chọn được hai viên bi cùng mầu và xác suất để chọn được hai viên bi khác mầu. Chọn ngẫu nhiên ba viên bi từ hộp bi đó. Tính xác suất để chọn được ba viên bi hoàn toàn khác mầu.KQ: P(hai bi cùng mầu) = (C24+C23+C22) /C29 = 5/18; P(hai bi khác mầu) = 1 - (C24+C23+C22) /C29 =13/18; P(ba bi khác mầu) = C14C13C12/C39 = 2/7. 22 giải toán lớp 11 trêN máY tính CầM TAY5. Xác suấtBài toán 5.3. Xác suất bắn trúng mục tiêu của một người bắn cung là 0,3. Người đó bắn ba lần liên tiếp. Tính xác suất để người đó bắn trúng mục tiêu đúng một lần, ít nhất một lần, đúng hai lần.KQ: P (trúng mục tiêu đúng một lần) = 0,441; P (trúng mục tiêu ít nhất một lần) = 0,657; P (trúng mục tiêu đúng hai lần) = 0,189.23 giải toán lớp 11 trêN máY tính CầM TAY 5. Xác suấtBài 5.4. Chọn ngẫu nhiên 5 quân bài trong một cỗ bài tú lơ khơ. Tính gần đúng xác suất để trong 5 quân bài đó có hai quân át và một quân 2, ít nhất một quân át.KQ: P (hai quân át và một quân 2) ≈ 0,0087; P (ít nhất một quân át) ≈ 0,3412.24 giải toán lớp 11 trêN máY tính CầM TAY 6. Dãy số và giới hạn của dãy số Bài toán 6.1. Dãy số an được xác định như sau:a1 = 2, an + 1 = (1 + an)/2 với mọi n nguyên dương.Tính giá trị của 10 số hạng đầu, tổng của 10 số hạng đầu và tìm giới hạn của dãy số đó.KQ: a1 = 2; a2 = 3/2; a3 = 5/4; a4 = 9/8; a5 = 17/16; a6 = 33/32; a7 = 65/64; a8 = 129/128; a9 = 257/256; a10 = 513/512; S10 = 6143/512; lim an = 1.25 giải toán lớp 11 trêN máY tính CầM TAY 6. Dãy số và giới hạn của dãy số Bài toán 6.2. Dãy số an được xác định như sau:a1 = 1, an + 1 = 2 + 3/an với mọi n nguyên dương. Tính giá trị của 10 số hạng đầu và tìm giới hạn của dãy số đó.KQ: a1 = 2; a2 = 5; a3 = 13/5; a4 = 41/13; a5 = 121/41; a6 = 365/121; a7 = 1093/365; a8 = 3281/1093; a9 = 9841/3281; a10 = 29525/9841; lim an = 3.26 giải toán lớp 11 trêN máY tính CầM TAY 6. Dãy số và giới hạn của dãy số Bài toán 6.3. Dãy số an được xác định như sau:a1 = 2, a2 = 3, an + 1 = (an + 1 + an)/2 với mọi n nguyên dương. Tính giá trị của 10 số hạng đầu của dãy số đó.KQ: a1 = 2; a2 = 3; a3 = 5/2; a4 = 11/4; a5 = 21/8; a6 = 43/16; a7 = 85/32; a8 = 171/64; a9 = 341/128; a10 = 683/256.27 giải toán lớp 11 trêN máY tính CầM TAY 6. Dãy số và giới hạn của dãy số Bài toán 6.4. Tính gần đúng giới hạn của dãy số có số hạng tổng quát làun = (3 + (3 + (3 + + 31/2)1/2)1/2)1/2 (n lần số mũ 1/2). u1 = 31/2, un+1 = (3 + un)1/2. KQ: lim un ≈ 2,3023.28 giải toán lớp 11 trêN máY tính CầM TAY6. Dãy số và giới hạn của dãy số Bài toán 6.5. Tính gần đúng giới hạn của dãy số có số hạng tổng quát làun = sin(1 - sin(1 - sin(1 - - sin1))) (n lần chữ sin). u1 = sin1, un+1 = sin(1 - un).KQ: lim un ≈ 0,4890.29 giải toán lớp 11 trêN máY tính CầM TAY 7. Hàm số liên tụcBài toán 7.1. Tính nghiệm gần đúng của phương trình x3 + x - 1 = 0. KQ: x ≈ 0,6823.30 giải toán lớp 11 trêN máY tính CầM TAY 7. Hàm số liên tụcBài toán 7.2. Tính nghiệm gần đúng của phương trình x2cosx + xsinx + 1 = 0. KQ: x ≈ ±2,1900.31 giải toán lớp 11 trêN máY tính CầM TAY7. Hàm số liên tụcBài toán 7.3. Tính nghiệm gần đúng của phương trình x4 - 3x2 + 5x - 6 = 0. KQ: x1 ≈ 1,5193; x2 ≈ - 2,4558.32 giải toán lớp 11 trêN máY tính CầM TAY7. Hàm số liên tụcBài toán 7.4. Tính các nghiệm gần đúng của phương trình - 2x3 +7x2 + 6x - 4 = 0. KQ: x1 ≈ 4,1114; x2 ≈ - 1,0672; x3 ≈ 0,4558.33 giải toán lớp 11 trêN máY tính CầM TAY8. Đạo hàm và giới hạn của hàm sốBài toán 8.1. Tính f’(π/2) và tính gần đúng f’(- 2,3418) nếu f(x) = sin 2x + 2x cos3x - 3x2 + 4x - 5. KQ: f’(π/2) = 2; f’(- 2,3418) ≈ 9,9699.34 giải toán lớp 11 trêN máY tính CầM TAY 8. Đạo hàm và giới hạn của hàm sốBài toán 8.2. Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm số y = (x + 1)/(4x2 + 2x + 1)1/2 tại điểm có hoành độ x = 1 + 21/2.a = f’(1+21/2), b = f(1+21/2) - (1+21/2).f’(1+21/2). KQ: a ≈ - 0,0460; b ≈ 0,7436.35 giải toán lớp 11 trêN máY tính CầM TAY8. Đạo hàm và giới hạn của hàm sốBài toán 8.3. Tìm lim ((x2 + 3x + 4)1/3 - (x + 3)1/2)/(x - 1). x-->1 KQ: 1/6.36 giải toán lớp 11 trêN máY tính CầM TAY 8. Đạo hàm và giới hạn của hàm sốBài toán 8.4. Tìm lim ((x3 + 8x2+24)1/3 - (x2 +3x+ 6)1/2)/(x2 -3x+ 2).x-->2 KQ: 1/24.37
File đính kèm:
- Giai toan bang may tinh cam tay.ppt