Đề thi thử học kì 2 – Môn Toán lớp 11 – Đề 1

Cho tam giác đều ABC cạnh bằng a. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại B, ta lấy một điểm M sao cho MB = 2a. Gọi I là trung điểm của BC.

 a) (1,0 điểm) Chứng minh rằng AI  (MBC).

 b) (1,0 điểm) Tính góc hợp bởi đường thẳng IM với mặt phẳng (ABC).

 c) (1,0 điểm) Tính khoảng cách từ điểm B đến mặt phẳng (MAI).

 

doc3 trang | Chia sẻ: quynhsim | Lượt xem: 617 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử học kì 2 – Môn Toán lớp 11 – Đề 1, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề số 1 ĐỀ THI THỬ HỌC KÌ 2 – Năm học 2010 – 2011 Môn TOÁN Lớp 11 Thời gian làm bài 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) b) Câu 2: (1,0 điểm) Tìm m để hàm số sau liên tục tại điểm x = 1: Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) b) Câu 4: (3,0 điểm) Cho tam giác đều ABC cạnh bằng a. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại B, ta lấy một điểm M sao cho MB = 2a. Gọi I là trung điểm của BC. a) (1,0 điểm) Chứng minh rằng AI ^ (MBC). b) (1,0 điểm) Tính góc hợp bởi đường thẳng IM với mặt phẳng (ABC). c) (1,0 điểm) Tính khoảng cách từ điểm B đến mặt phẳng (MAI). II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau: 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất 1 nghiệm: Câu 6a: (2 điểm) Cho hàm số . a) Giải bất phương trình: . b) Viết phương trình tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 1. 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có đúng 3 nghiệm: Câu 6b: (2,0 điểm) Cho hàm số . a) Giải bất phương trình: . b) Viết phương trình tiếp tuyến với đồ thị hàm số, biết tiếp tuyến có hệ số góc bằng 6. ––––––––––––––––––––Hết––––––––––––––––––– Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . ĐÁP ÁN ĐỀ KIỂM TRA HỌC KÌ II – NĂM HỌC 2010 – 2011 MÔN TOÁN LỚP 11 – ĐỀ SỐ 1 CÂU Ý NỘI DUNG ĐIỂM 1 a) 0,50 I = 2 0,50 b) 0,50 0,50 2 f(1) = m 0,25 0,50 f(x) liên tục tại x = 1 Û 0,25 3 a) 1,00 b) 0,50 0,50 4 a) 0,25 Tam giác ABC đều cạnh a , IB = IC = Þ AI ^ BC (1) 0,25 BM ^ (ABC) Þ BM ^AI (2) 0,25 Từ (1) và (2) ta có AI ^ (MBC) 0,25 b) BM ^ (ABC) Þ BI là hình chiếu của MI trên (ABC) 0,50 Þ 0,50 c) AI ^(MBC) (cmt) nên (MAI) ^ (MBC) 0,25 0,25 0,25 0,25 5a Với PT: , đặt 0,25 f(0) = –5, f(1) = 1 Þ f(0).f(1) < 0 0,50 Þ Phuơng trình đã cho có ít nhất một nghiệm thuộc (0; 1) 0,25 6a a) Þ 0,50 0,50 b) 0,25 0,50 Phương trình tiếp tuyến cần tìm là: y = –12x + 6 0,25 5b Với PT: đặt f(x) = 0,25 f(–2) = 0, f(–3) = 0 Þ phương trình có nghiệm x = –2 và x = –3 0,25 f(5) = –30, f(6) = 72 Þ f(5).f(6) < 0 nên là nghiệm của PT 0,25 Rõ ràng , PT đã cho bậc 3 nên PT có đúng ba nghiệm thực 0,25 6b a) Þ 0,25 0,25 0,25 0,25 b) Gọi là toạ độ của tiếp điểm Þ 0,25 0,25 Với 0,25 Với 0,25

File đính kèm:

  • docKiem tra Toan 11 Hoc ki 2 De so 1.doc
Giáo án liên quan