PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I ( 2 điểm)
Cho hàm số
1) Khảo sát và vẽ đồ thị (C).
2) Tìm trên đồ thị ( C) điểm M sao cho khoảng cách từ điểm M đến đường tiệm cận đứng bằng khoảng cách từ điểm M đến đường tiệm cận ngang.
Câu II ( 2 điểm)
1) Giải phương trình :
2) Giải bất phương trình:
Câu III ( 1 điểm)
Tính
Câu IV ( 1 điểm)
Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = a, AC = 2a, SA = a và SA vuông góc mặt đáy, mặt phẳng (P) qua A vuông góc với SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
Câu V ( 1 điểm)
Cho x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức .
5 trang |
Chia sẻ: oanhnguyen | Lượt xem: 1098 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi thử đại học, cao đẳng 2012 môn thi : toán đề 130, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG
Môn thi : TOÁN ( ĐỀ 130)
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I ( 2 điểm)
Cho hàm số
Khảo sát và vẽ đồ thị (C).
Tìm trên đồ thị ( C) điểm M sao cho khoảng cách từ điểm M đến đường tiệm cận đứng bằng khoảng cách từ điểm M đến đường tiệm cận ngang.
Câu II ( 2 điểm)
Giải phương trình :
Giải bất phương trình:
Câu III ( 1 điểm)
Tính
Câu IV ( 1 điểm)
Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = a, AC = 2a, SA = a và SA vuông góc mặt đáy, mặt phẳng (P) qua A vuông góc với SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
Câu V ( 1 điểm)
Cho x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức.
PHẦN RIÊNG ( 3 điểm)
Thí sinh chỉ được làm một trong hai phần ( Phần A hoặc phần B)
A. Theo chương trình Chuẩn
Câu VI.a ( 2 điểm)
Cho tam giác ABC có B(3; 5), đường cao AH và trung tuyến CM lần lượt có phương trình
d: 2x - 5y + 3 = 0 và d’: x + y - 5 = 0. Tìm tọa độ đỉnh A và viết phương trình cạnh AC.
2) Cho mặt cầu (S) : và mặt phẳng
Chứng minh rằng (S) và cắt nhau theo giao tuyến là đường tròn (T). Tìm tâm và bán kính của đường tròn (T) .
Câu VII.a ( 1 điểm)
Tìm số phức z, nếu .
B. Theo chương trình Nâng cao
Câu VI .b ( 2 điểm)
Cho đường tròn ( C) và điểm A (-2; 3) các tiếp tuyến qua A của ( C) tiếp xúc với ( C) tại M, N .Tính diện tích tam giác AMN.
Cho hai đường thẳng d: và d’:
Chứng minh rằng d và d’ chéo nhau. Tính độ dài đoạn vuông góc chung của d và d’.
Câu VII.b ( 1 điểm) Cho hàm số (C). Tìm trên đường thẳng x = 1 những điểm mà từ đó kẻ được 2 tiếp tuyến đến đồ thị ( C).
*********************Hết********************
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG
Môn thi : TOÁN ( ĐỀ 64)
Nội dung
+)pt
Giải (1) ta được
Giải (2) : Đặt
Ta được phương trình
Với t = 0 Vậy phương trình có nghiệm:
Bình phương hai vế ta được
Đặt ta được bpt ( do)
Với
( do ) Vậy bpt có nghiệm
Đặt
Do đó
Tính I1: Ta có
Vậy
S
C
B
A
K
H
a
2a
a
+) Theo bài ra ta có
Và nên
+) Áp dụng định lý Pitago và hệ thức trong tam giác vuông
ta có ,
+) Ta có
Vậy
+) Theo B ĐT Côsi ta có
+) Ta có
+) B¶ng biÕn thiªn :
t
0
P’
-
P
+) Từ bbt ta có tại
A
D
E
B
d’
C
d
d1
+) Gọi nên tọa độ của D là nghiệm của hệ
+) Goi d1 là đường thẳng qua B và song song với d’ nên phương trình d1 là: x + y – 8 = 0.
Gọi nên .Vì d’ là đường trung tuyến qua C nên D là trung điểm AE suy ra
+) Ta có cạnh BC c với d nên phương trình cạnh BC là 5x + 2y – 25 = 0Suy ra
+) Vậy phương trình cạnh AC là
+) Mặt cầu (S) có tâm I(3;-2;1) và bán kính r = 10 .Ta có :
Vậy nên (S) cắt theo giao tuyến là đường tròn (T) .
+) Gọi J là tâm của (T) thì J là hình chiếu của I lên .Xét đường thẳng (d) đi qua I và vuông góc với . Lúc đó (d) có vectơ chỉphương là . Phương trình tham số của (d) là :
+) Ta có Xét hệ: Giải hệ này ta được : J(-1;2;3) .
+) Gọi r’ là bán kính của (T) , ta có : Vậy : J(-1;2;3) và r’= 8
+) Đặt z = x + yi, khi đó
+)
+) Û
+)Vậy có ba số phức thoả điều kiện là z = 0; z = i; z = − i.
+) Ta có (C ) có Tâm I(1; 2) bán kính R = 3 Và dễ thấy có một tiếp tuyến vuông góc với Ox và qua A là d: x= -2
+)Gọi d’ là dường thẳng qua A ( -2; 3) có hệ số góc là k ta có d’ y = k(x + 2) + 3
d’ là tiếp tuyến của ( C ) ód( I, d’ ) = R ó
+ ta có tiếp điểm của d và (C ) là M(-2; 0), của d’ và (C ) là
+ Ta có AM = 3, .Vậy
+) Ta có vtcp của d vtcp của d’ =>
+)Ta có vậy d và d’ chéo nhau ta có , AB là đoạn vuông góc chung ó
+) Vậy d(d,d’) = AB =
Chú ý : có thể tính theo cách
+) Gäi M lµ ®iÓm thuéc ®êng th¼ng x=1, d lµ ®êng th¼ng ®i qua M cã hÖ sè gãc lµ k. d cã ph¬ng tr×nh lµ : y= k(x-1)+m ( víi M(1,m) )
+) Thay (2) vµo (1) ta cã
(3)
+)§Ó tõ M kÎ ®îc ®óng 2 tiÕp tuyÕn ®Õn C th× ph¬ng tr×nh (3) cã ®óng 2 ngiÖm ph©n biÖt
Do ®ã (*)
+) VËy trªn ®êng th¼ng x=1 .TËp hîp c¸c ®iÓm cã tung ®é nhá h¬n 0 (m<0) bá ®i ®iÓm (1,-2) th× tõ ®ã kÎ ®îc ®óng 2 tiÕp tuyÕn ®Õn C
File đính kèm:
- De thi thu dai hoc SỐ 130.doc