A. Tóm tắt lý thuyết
1. Định nghĩa: Khoảng cách từ một đi ểm đến mặt phẳng (hoặc đường thẳng) bằng khoảng cách 
từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng (hoặc đường thẳng).
Khoảng cách từ điểm M tới mặt phẳng   P được 
ký hiệu là     d M; P .
H là hình chiếu vuông góc của M lên   P thì
    d M; P MH 
Khoảng cách từ điểm M tới đường thẳng 
 được ký hiệu là   d M;  .
H là hình chiếu vuông góc của M lên 
thì
  d M; MH   .
2. Bài toán cơ bản: Nhiều bài toán tính khoảng cách từ điểm tới mặt phẳng, từ điểm tới đường 
thẳng có thể quy về bài toán cơ bản sau
Bài toán: Cho hình chóp S.ABC có SA vuông góc với đáy. Tính kho ảng cách từ điểm A đến 
mặt phẳng   SBC và khoảng cách từ điểm S đến đường thẳng BC .
Cách giải:
Gọi D là chân đường vuông góc hạ từ A xuống BC , H là chân 
đường vuông góc hạ từ A xuống SD . Ta có
+)   SA ABC   BC SA  , l ại có BC AD  (do dựng) 
  BC SAD   SD BC     d S;BC SD  .
+) Từ chứng minh trên, đã có   BC SAD   AH BC  , l ại 
có AH SD  (do vẽ)    AH SBC       d A; SBC AH 
 
              
                                            
                                
            
                       
            
                 18 trang
18 trang | 
Chia sẻ: quynhsim | Lượt xem: 721 | Lượt tải: 0 
              
            Bạn đang xem nội dung tài liệu Bài toán khoảng cách trong hình học không gian, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài toán khoảng cách trong hình học không gian 
Mục lục 
Loại 1. Khoảng cách từ điểm đến mặt phẳng, một đường thẳng................................................................ 1 
A. Tóm tắt lý thuyết .......................................................................................................................... 1 
B. Một số ví dụ ................................................................................................................................. 3 
C. Bài tập ......................................................................................................................................... 8 
Loại 2. Khoảng cách giữa hai đường thẳng chéo nhau. Đường vuông góc chung của hai đường thẳng .... 11 
A. Tóm tắt lý thuyết ........................................................................................................................ 11 
B. Một số ví dụ ............................................................................................................................... 12 
C. Bài tập ....................................................................................................................................... 15 
Bản quyền thuộc về ThS. Phạm Hồng Phong – Trường Đại học Xây dựng 
Tài liệu có thể được download miễn phí tại violet.vn/phphong84 
Từ khóa : pham hong phong, khoang cach trong khong gian 
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
1 
Loại 1. Khoảng cách từ điểm đến mặt phẳng, một đường thẳng 
A. Tóm tắt lý thuyết 
1. Định nghĩa: Khoảng cách từ một điểm đến mặt phẳng (hoặc đường thẳng) bằng khoảng cách 
từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng (hoặc đường thẳng). 
Khoảng cách từ điểm M tới mặt phẳng  P được 
ký hiệu là   d M; P . 
H là hình chiếu vuông góc của M lên  P thì 
   d M; P MH 
Khoảng cách từ điểm M tới đường thẳng 
 được ký hiệu là  d M; . 
H là hình chiếu vuông góc của M lên  
thì 
  d M; MH  . 
2. Bài toán cơ bản: Nhiều bài toán tính khoảng cách từ điểm tới mặt phẳng, từ điểm tới đường 
thẳng có thể quy về bài toán cơ bản sau 
Bài toán: Cho hình chóp S.ABC có SA vuông góc với đáy. Tính khoảng cách từ điểm A đến 
mặt phẳng  SBC và khoảng cách từ điểm S đến đường thẳng BC . 
Cách giải: 
Gọi D là chân đường vuông góc hạ từ A xuống BC , H là chân 
đường vuông góc hạ từ A xuống SD . Ta có 
+)  SA ABC  BC SA , lại có BC AD (do dựng)  
 BC SAD  SD BC   d S;BC SD . 
+) Từ chứng minh trên, đã có  BC SAD  AH BC , lại 
có AH SD (do vẽ)   AH SBC    d A; SBC AH
. 
H
P
M
Δ
M
H
S
A C
B
D
H
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
2 
3. Một số lưu ý 
* Về cách tính khoảng cách một cách gián tiếp 
+)  MN P       d M; P d N; P . 
+) 
 
   
M,N Q
Q P
 
 
       d M; P d N; P . 
+)  MN P I        
d M; P d M; Q
MI NI . 
Trường hợp đặc biệt: I là trung điểm của MN       d M; P d N; P . 
+) MN        d M; P d N; P . 
+) MN I      d M; d M;MI NI
 
 . 
Trường hợp đặc biệt: I là trung điểm của MN     d M; d N;   . 
* Về cách sử dụng thể tích để tính khoảng cách từ điểm đến mặt phẳng: 
Cho hình chóp 1 2 nS.A A ...A . Ta có  
3VS.A A ...A1 2 n
1 2 n SA A ...A1 2 n
d S, A A ...A    . 
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
3 
B. Một số ví dụ 
Ví dụ 1. [ĐHD03] Cho hai mặt phẳng  P và  Q vuông góc với nhau, cắt nhau theo giao 
tuyến  . Lấy A , B thuộc  và đặt AB a . Lấy C , D lần lượt thuộc  P và  Q sao cho 
AC , BD vuông góc với  và AC BD a  . Tính khoảng cách từ A đến mặt phẳng phẳng 
 BCD . 
Giải 
Ta có    P Q ,    P Q   ,  AC P , 
AC     AC Q  BD AC . Lại có 
BD AB   BD ABC  1 . 
Gọi H là chân đường vuông góc hạ từ A 
xuống BC . Vì ABC vuông cân tại A nên 
AH BC và a 2BC2 2AH   . 
Từ  1 suy ra AH BD   AH BCD . Do đó H là chân đường vuông góc hạ từ A lên 
 BCD     a 22d A; BCD AH  . 
Ví dụ 2. [ĐHD12] Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình vuông, tam giác 
A'AC vuông cân, A'C a . Tính khoảng cách từ điểm A đến mặt phẳng  BCD' theo a . 
Giải 
Q
P
Δ
a
a
a H
A B
C
D
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
4 
A'AC vuông cân (tại A ) nên 
A'C
2
AC AA' a 2   . ABC vuông cân (tại B ) 
nên AC
2
AB a  . 
Hạ AH A 'B ( H A 'B ) .Ta có BC ABB'A' 
 AH BC , lại có AH A 'B (do dựng)  
 AH BCD' . 
AH là đường cao của tam giác vuông ABA'  31 1 1 1 12 2 2 2 2 2AH AB AA' a 2a 2a
      
a 6
3AH  .Vậy  
a 6
3d A;BCD' AH AH   . 
Ví dụ 3. Cho hình chóp S.ABC có SA 3a và  SA ABC . Giả sử AB BC 2a  , 
ABC 120  . Tìm khoảng cách từ A đến mặt phẳng  SBC . 
Giải 
Dựng AD BC ( D BC ) và AH SD ( H SD ). 
Thật vậy, từ giả thiết ta có CD SA , lại có CD AD 
(do dựng)   CD SAD  AH CD , mà 
AH SD   AH SCD  H là chân đường 
vuông góc hạ từ A lên  SBC . 
Ta có AD AB sin ABD 2asin 60 a 3   . 
AH là đường cao của tam giác SAD vuông tại A nên: 1 1 1 1 1 42 2 2 2 2 2AH AS AD 9a 3a 9a
     
 3a2AH  . Vậy  
3a
2d A;SBC AH  . 
a
a 2
a 2
2a
C
C'
D
D'
A
A'
B
B'
H
2a 2a
3a
120o
S
A
C
B
D
H
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
5 
Ví dụ 4. [ĐHD11] Cho hình chóp S.ABC có đáy là tam giác vuông tại B , BA 3a , BC 4a ; 
mặt phẳng  SBC vuông góc với mặt phẳng  ABC . Biết SB 2a 3 và SBC 30  . Tính 
khoảng cách từ điểm B đến mặt phẳng  SAC theo a . 
Giải 
Hạ SK BC ( K BC ). Vì    SBC ABC nên 
 SK ABC . 
Ta có  32BK SBcosSBC 2a 3. 3a   
 KC BC BK 4a 3a a     . 
Do đó nếu ký hiệu 1d , 2d lần lượt là các khoảng cách từ 
các điểm B , K tới  SAC thì d BC1d KC2 4  , hay 
1 2d 4d . 
Hạ KD AC ( D AC ), hạ KH SD ( H SD ). Từ  SK ABC  AC SK , lại có 
AC KD (do dựng)   AC SKD  KH AC , mà KH SD (do dựng)  
 KH SAC  2d KH . 
Từ ADK ABA  suy ra: CK DKCA BA  
BA.CK 3a.a 3a
CA 5a 5DK    
 (    2 22 2CA BA BC 3a 4a 5a     ). 
KS SB.sin SBC a 3  . KH là đường cao của tam giác vuông SKD nên: 
25 281 1 1 1
2 2 2 2 2 2KH KD KS 9a 3a 9a
      3a 714KH  . 
Vậy    6a 71 2 7d B; SAC d 4d 4KH    . 
Ví dụ 5. [ĐHB11] Cho lăng trụ 1 1 1 1ABCD.A B C D có đáy ABCD là hình chữ nhật, AB a , 
AD a 3 . Hình chiếu vuông góc của điểm 1A lên mặt phẳng  ABCD trùng với giao điểm 
của AC và BD . Góc giữa hai mặt phẳng  1 1ADD A và  ABCD bằng 60 . Tính khoảng 
cách từ điểm 1B đến mặt phẳng  1A BD theo a . 
30°
2a 3
4a
3a
K
S
C
A
B
D
H
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
6 
Giải 
Vì 1B A cặt mặt phẳng  1A BD tại trung điểm của 1B A nên khoảng cách từ 1B và A tới 
 1A BD bằng nhau. 
Gọi I là giao điểm của AC và BD , M là trung điểm của AD . Ta có  1A I ABCD  
1AD A I  1 . Lại có IAD là tam giác cân tại I nên trung tuyến IM đồng thời là đường cao, 
tức là AD IM  2 . Từ  1 và  2 suy ra  1AD A IM  1A M AD . Do đó 1A MI 
chính là góc giữa hai mặt phẳng  1 1A D DA và  ABCD  1A MI 60  . 
Từ   1A ABD A BD 11 3 1V S .d A; A BD suy ra   
33a3VA ABD a 31 4
1 S 2 2A BD a 31
2
d A; A BD    . 
Vậy    a 31 1 2d B ; A BD  . 
Ví dụ 6. Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B và AC 2a . SA có độ dài 
bằng a và vuông góc với đáy. 
1) Tính khoảng cách từ điểm S đến đường thẳng BC . 
2) Gọi H là chân đường vuông góc hạ từ A lên SB . Tính khoảng cách từ trung điểm M của 
AC đến đường thẳng CH . 
 a 3
1 1 2A I IM.tan A MI  
 A ABD1V 
1
ABD 13 S .A I 
 1 1 13 2. AB.AD.A I 
3a 3 a1
6 2 4a.a 3.  . 
Lại có 
A BD1S 
1
12 BD.A I 
2a 3 a 32 21
2 2 2a 3a .   . 
a 3
a
I M
D1C1
B1
A1
DC
B A
60o
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
7 
Giải 
1) Ta có  SA ABC  BC SA , cũng từ giả thiết ta có BC AB   BC SAB  
SB BC . BC
2
AB a 2   2 2 2 2SB SA AB a 2a a 3     . 
Vậy  d S;BC SB a 3  . 
2) Gọi H là chân đường vuông góc hạ từ A lên SB . Ở câu trên, 
ta đã chứng minh  BC SAB  AH BC , lại có AH SB 
AH CH . 
Lại lấy K là trung điểm của CH 
 MK song song và bằng 12 AH 
 MK CH , a 6a.a 2SA.AB1 12 2 62 2 2 2SA AB a 2a
MK
 
   . 
Vậy   a 66d M;CH MK  . 
2a
a
K
M
H
S
A C
B
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
8 
C. Bài tập 
Bài 1. Cho tứ diệnOABC có OA , OB , OC đôi một vuông góc với nhau. Kẻ  OH ABC . 
1) Chứng minh: H là trực tâm ABC . 
2) Chứng minh: 2 2 2 2
1 1 1 1
OH OA OB OC
   . 
Bài 2. [ĐHD02] Cho tứ diện ABCD có  AD ABC ; AC AD 4cm  , AB 3cm , 
BC 5cm . Tìm khoảng cách từ A tới mặt phẳng  BCD . 
Bài 3. Cho hình chóp S.ABC có SA SB SC a   , ASB 120  , BSC 60  , CSA 90  . 
Tính khoảng cách từ S đến mặt phẳng  ABC . 
Bài 4. Cho tam giác ABC vuông tại A . Cạnh AB có độ dài bằng a và nằm trong mặt phẳng 
  . Biết rằng cạnh AC có độ dài bằng a 2 và tạo với mặt phẳng   góc 60 , hãy tính 
khoảng cách từ điểm C đến mặt phẳng   . 
Bài 5. Trong mặt phẳng   cho góc vuông xOy . M là một điểm nằm ngoài   . Biết rằng 
MO 23 cm và khoảng cách từ M đến Ox , Oy cùng bằng 17 cm . Tính khoảng cách từ điểm 
M đến mặt phẳng   . 
Bài 6. Cho hình chóp S.ABC có SA vuông góc với đáy. Biết rằng AB 7 cm , BC 5 cm , 
CA 8 cm , SA 4 cm . 
1) Tính khoảng cách từ A đến mặt phẳng  SBC 
2) Tính khoảng cách từ các điểm S và A đến đường thẳng BC . 
Bài 7. [ĐHD07] Cho hình chóp S.ABCD có đáy là hình thang,  ABC BAD 90   , 
BA BC a  , AD 2a . Cạnh SA vuông góc với đáy và SA a 2 . Gọi H là hình chiếu 
vuông góc của A lên SB . Tính khoảng cách từ H đến mặt phẳng  SCD theo a . 
Bài 8. [ĐHD09] Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B , 
AB a , AA' 2a , A'C 3a . Gọi M là trung điểm của đoạn thẳng A'C' , I là giao điểm của 
AM và A'C . Tính khoảng cách từ điểm A đến mặt phẳng  IBC theo a . 
Bài 9. Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a , cạnh bên bằng 2a . Gọi G là 
tâm của đáy, M là trung điểm của SC . 
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
9 
1) Tính khoảng cách từ điểm S đến mặt phẳng  ABC . 
2) Tính khoảng cách từ điểm M đến mặt phẳng  SAG . 
Bài 10. Cho ABC là tam giác vuông cân tại B , BA a . Trên đường thẳng vuông góc với mặt 
phẳng  ABC tại A lấy điểm S sao cho SA a . Gọi I , M theo thứ tự là trung điểm của SC , 
AB . 
1) Tính khoảng cách từ điểm I đến mặt phẳng  ABC 
2) Tính khoảng cách từ các điểm S và I đến đường thẳng CM . 
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
10 
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
11 
Loại 2. Khoảng cách giữa hai đường thẳng chéo nhau. Đường vuông 
góc chung của hai đường thẳng 
A. Tóm tắt lý thuyết 
4. Định nghĩa: Cho hai đường thẳng chéo nhau a và b . 
* Đường thẳng  cắt a , b và vuông góc với a , b được gọi là 
đường vuông góc chung của a và b . 
* Nếu đường vuông góc chung cắt a , b lần lượt tại M , N thì độ 
dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường 
thẳng chéo nhau a và b . 
5. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau 
* Phương pháp tổng quát: Cho hai đường thẳng chéo 
nhau a , b . Gọi   là mặt phẳng chứa b và song 
song với a , a' là hình chiếu vuông góc của a lên  
. Đặt N a' b  , gọi  là đường thẳng qua N và 
vuông góc với     là đường vuông góc chung 
của a và b . Đặt M a   khoảng cách giữa a 
và b là độ dài đường thẳng MN . 
* Trường hợp đặc biệt: Cho hai đường thẳng chéo 
nhau và vuông góc với hau a , b . Gọi   là mặt 
phẳng chứa b và vuông góc với a . Đặt  M a   . 
Gọi N là chân đường vuông góc hạ từ M xuống b 
 MN là đường vuông góc chung của a , b và 
a
b
Δ
N
M
a
a'
b
α
M
N
a
a'
b
α
M
N
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
12 
khoảng cách giữa a , b là độ dài đoạn thẳng MN . 
6. Nhận xét: Cho hai đường thẳng chéo nhau a và b . Các nhận xét nhau đây cho ta cách khác 
để tính khoảng cách giữa a và b . 
* Nếu   là mặt phẳng chứa a và song song với b thì khoảng cách giữa hai đường thẳng bằng 
khoảng cách giữa b và   . 
* Nếu   ,   là các đường thẳng song song với nhau, lần lượt chứa a , b thì khoảng cách 
giữa hai đường thẳng bằng khoảng cách giữa   và   . 
B. Một số ví dụ 
Ví dụ 1. [ĐHD08] Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông có 
BA BC a  , cạnh bên AA' a 2 . Gọi M là trung điểm của BC . Tính khoảng cách giữa hai 
đường thẳng AM và B'C . 
Giải 
Lấy N là trung điểm của BB ' , ta có MN là đường trung bình 
của tam giác B'BC  B'C MN   B'C AMN . Do đó 
       d B'C;AM d B'C; AMN d B'; AMN  . 
Lại có BB ' cắt  AMN tại N là trung điểm của BB ' nên 
     d B'; AMN d B; AMN . 
Hình chóp B.AMN có BA , BM , BN đôi một vuông góc nên 
  2 2 2 2 2 2 2 2
1 1 1 1 1 4 2 7
d B; AMN BA BM BN a a a a
           a 7d B; AMN 7 . 
Vậy   a 7d B'C;AM
7
 . 
Ví dụ 2. [ĐHA06] Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1 . Gọi M , N 
lần lượt là trung điểm của AB và CD . Tính khoảng cách giữa hai đường thẳng A'C và MN . 
Giải 
N
M
A
B
C
C'
B'
A'
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
13 
Ta thấy MN BC   MN A'BC 
       d A'C;MN d MN;A'BC d M; A'BC  . 
Gọi H là chân đường vuông góc hạ từ M xuống A 'B . Ta 
có:  BC ABB'A'  MH BC , mặt khác MH  
A 'B (do vẽ)   MH A'BC  H chính là chân 
đường vuông góc hạ từ M xuống  A'BC . 
MH là cạnh góc vuông của tam giác vuông cân HBM  a 2BM 42
MH   . 
Vậy   a 24d A'C;MN  . 
Ví dụ 3. [ĐHA04] Cho hình chóp tứ giác S.ABCD có đáy là hình thoi đường chéo AC 4 , 
SO 2 2 và SO vuông góc với đáy ABCD , ở đây O là giao điểm của AC và BD . Gọi M 
là trung điểm của SC . Tìm khoảng cách giữa hai đường thẳng SA và BM . 
Giải 
Ta có MO là đường trung bình của tam giác SAC 
 SA MO   SA MBD 
      d SA;MB d SA;MBD d S;MBD  . 
SC cắt mặt phẳng  MBD tại trung điểm M của SC nên 
     d S; MBD d C; MBD . 
Gọi K là chân đường vuông góc hạ từ M xuống SA , đặt H CK MO  . Ta có 
 SO ABCD  BD SO , lại có ABCD là hình thoi nên BD AC   BD SAC  
CH BD  1 . MO SA , CK SA  CH MO  2 . Từ  1 và  2 suy ra H là chân 
đường vuông góc hạ từ C xuống  MBD . 
Từ 2 2SA SO AO 8 4 2 3     , 1 1SAC 2 2S AC.SO 4.2 2 4 2   suy ra 
H
N
M
C
C'
D
D'
A
A'
B
B'
K M
O
C
A B
D
S
H
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
14 
2S 2 62.4 2SAC1 1 1
2 2 SA 2 32 3
CH CK    . Vậy   2 63d SA;MB  . 
Ví dụ 4. [ĐHB02] Cho hình lập phương ABCD.A'B'C'D' cạnh a . Tính theo a khoảng cách 
giữa hai đường thẳng A 'B và B'D . 
Giải 
Lấy M , N , P lần lượt là trung điểm các đoạn thẳng A'D' , 
BC , AD . Ta thấy A'MDP và BNDP là các hình bình hành 
nên MD A'P , DN PB     MDNB' A'PB . Do đó 
         d A'B;B'D d A'PB ; MDNB' d D; A'PB  . 
Lại có AD cắt  A'PB tại trung điểm P của AD  
     d D; A'PB d A; A'PB . 
Hình chóp A.A'PB có AA' , AP , AB đôi một vuông góc nên 
  
91 1 1 1 1 4 4
2 2 2 2 2 2 2 2d A; A'PB AA' AP AB a a a a
           a3d A; A'PB  . 
Vậy   a3d A'B;B'D  . 
Ví dụ 5. Cho tứ diện đều ABCD có độ dài các cạnh bằng 6 2 cm . Hãy xác định đường vuông 
góc chung và tính khoảng cách giữa hai đường thẳng AB và CD . 
Giải 
Gọi M , N lần lượt là trung điểm các cạnh AB , CD . Ta có 
ACD và BCD là các tam giác đều nên CD vuông góc với 
AN và BN  CD MN . 
Lại có AN AN 3 6  suy ra AB MN và 
 2 2MN AN AM 54 18 6 cm     . 
Vậy MN là đường vuông góc chung của AB , CD và khoảng cách giữa chúng là MN 6 cm . 
P
N
M
C'
C
D'
D
A'
A
B'
B
M
N
B D
C
A
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
15 
Ví dụ 6. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB a , BC 2a , cạnh 
SA vuông góc với đáy và SA 2a . Hãy xác định đường vuông góc chung và tính khoảng cách 
giữa hai đường thẳng AB và SC . 
Giải 
Lấy điểm D sao cho ABCD là hình chữ nhật  
 AB SCD . 
Gọi E là chân đường vuông góc hạ từ A xuống 
SD . Ta thấy ABCD là hình chữ nhật nên 
CD AD , lại có  SA ABC  CD SA  
 CD SCD  AE CD  1 . Mặt khác 
AE SD (do dựng)  2 . Từ  1 và  2 suy ra 
 AE SCD  E là hình chiếu vuông góc của 
A lên  SCD . 
Đường thẳng qua E song song với CD chính là hình chiếu vuông góc của AB lên  SCD . 
Đường thẳng này cắt SC tại N . Đường thẳng qua N song song với AE cắt AB tại M  
MN là đường vuông góc chung cần tìm.Tam giác SCD cân tại A nên E là trung điểm của SD 
 N là trung điểm của SD . CD a2 2AM EN    M là trung điểm của AB . 
Vậy khoảng cách giữa hai đường thẳng AB , CD là AD
2
MN AE a 2   .
2a
2a
2a
a
M
N
E
B
A
D
C
S
THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 
16 
C. Bài tập 
Bài 1. [ĐHB07NC] Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a . Gọi E là 
điểm đối xứng với D qua trung điểm của SA , M là trung điểm của AE , N là trung điểm của 
BC . Chứng minh MN vuông góc với BD và tính (theo a ) khoảng cách giữa hai đường thẳng 
MN và AC . 
Bài 2. [ĐHA11] Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B , AB BC 2a  ; 
hai mặt  SAB và  SAC cùng vuông góc với mặt phẳng  ABC . Gọi M là trung điểm của 
AB ; mặt phẳng qua SM song song với BC , cắt AC tại N . Biết góc giữa hai mặt phẳng 
 SBC và  ABC bằng 60 . Tính khoảng cách giữa hai đường thẳng AB và SN theo a . 
Bài 3. [ĐHA10] Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . Gọi M và N lần lượt 
là trung điểm của AB và AD ; H là giao điểm của CN và DM . Biết SH vuông góc với mặt 
phẳng  ABCD và SH a 3 . Tính khoảng cách giữa hai đường thẳng DM và SC theo a . 
Bài 4. [ĐHA12] Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , hình chiếu vuông góc 
của S lên mặt phẳng  ABC là điểm H thuộc cạnh AB sao cho HA 2HB . Góc giữa đường 
thẳng SC và mặt  ABC bằng 60 . Tính khoảng cách giữa hai đường thẳng SA và BC theo 
a . 
Bài 5. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA h và SA vuông góc với 
đáy. Hãy xác định đường vuông góc chung và tính khoảng cách giữa hai đường thẳng SC và 
AB . 
Bài 6. Trong mặt phẳng  P cho đường tròn đường kính AB 2R , C là một điểm chạy trên 
đường tròn đó. Trên đường thăng đi qua A và vuông góc với  P lấy S sao cho SA a 2R  . 
Gọi E và F lần lượt là trung điêm của AC và SB . Xác định vị trí của C trên đường tròn sao 
cho EF là đường vuông góc chung của AC và SB . 
Bài 7. Cho tứ diện ABCD có AC AD BC BD a    , AB 2m , CD 2n . Gọi I , K lần 
lượt là trung điểm của AB và CD . 
1) Chứng minh rằng IK là đường vuông góc chung của hai cạnh AB và CD . 
2) Tính độ dài IK theo a , m và n . 
            File đính kèm:
 CD2_KhoangCach.pdf CD2_KhoangCach.pdf