Bài giảng môn Toán học lớp 9 - Tiết 19 - Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số (Tiếp theo)

1. Khái niệm hàm số.

 * Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.

Ví dụ 1: a/ y là hàm số của x được cho bởi bảng sau:

 

ppt14 trang | Chia sẻ: quynhsim | Lượt xem: 604 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Toán học lớp 9 - Tiết 19 - Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số (Tiếp theo), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Nhiệt liệt chào mừng các thầy cô giáo 1. Khái niệm hàm số.Chương II- Hàm số bậc nhấtĐ1. Nhắc lại và bổ sung các khái niệm về hàm số * Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.Tiết 19Ví dụ 1: a/ y là hàm số của x được cho bởi bảng sau: 1246y4321x b/ y là hàm số của x cho bởi công thức:y = 2xy = 2x + 3- Hàm số cho bằng công thức y = f(x), ta hiểu rằng biến số x chỉ lấy giá trị mà tại đó f(x) xác định - Khi y là hàm số của x, ta có thể viết: y = f(x), y = g(x) Ví dụ :y = f(x) = 2x+3 - Khi x thay đổi mà y luôn nhận giá trị không đổi thì y được gọi là hàm hằng- Giá trị của hàm số y = f(x) tại x = là f( )Tính f(0); f(1); f(2); f(3); f(-2); f(-10).Đáp án:2. Đồ thị hàm số.?2 a/ Biểu diễn các điểm sau trên mặt phẳng toạ độ Oxy :b/ Vẽ đồ thị của hàm số y = 2x.A(1;2)-2 -1 0 1 2 x y 2 1-1-2F(4;1/2) -4 -3 -2 -1 0 1 2 3 4 xA(1/3;6)B(1/2;4)C(1;2)D(2;1)E(3;2/3)y 6 543211/ Tập hợp tất cả các điểm biểu diễn cặp giá trị tương ứng (x; f(x) ) trên mặt phẳng toạ độ gọi là đồ thị của hàm số y = f(x).2/ Đồ thị của hàm số y = ax ( a ≠ 0) là đường thẳng đi qua gốc toạ độ.Kết luận:3/ Khi vẽ đồ thị của hàm số y = ax chỉ cần xác định thêm một điểm thuộc đồ thị khác gốc O. 3. Hàm số đồng biến, nghịch biến.?3 Tính giá trị y tương ứng của các hàm số y = 2x+1 và hàm số y = -2x + 1 theo giá trị đã cho của biến x rồi điền vào bảng sau:x-2,5-2-1,5-1-0,500,511,5y = 2x+1y = -2x+1Nhận xét: Hai hàm số trên xác định với....................* Đối với hàm số y = 2x+1 khi x tăng lên thì các giá trị tương ứng của y .....................* Đối với hàm số y = -2x+1 khi x tăng lên thì các giá trị tương ứng của y ......................tăng lêngiảm đita nói hàm số y = 2x + 1 đồng biến trên R.ta nói hàm số y = - 2x + 1 nghịch biến trên R.-4-3-2-1012346543210-1-2mọi x thuộc R.Tổng quát: a / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R. b / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R.Cho hàm số y = f(x) xác định với mọi x thuộc R.Bài tập: Trong các bảng các giá trị tương ứng của x và y bảng nào cho ta hàm số đồng biến? nghịch biến? (Với y là hàm số của x ).a/x-2-1012y8421-1b/x23467y12578c/x13457y33333 Bảng a: khi giá trị của x tăng lên thì giá trị tương ứng của y giảm đi nên y là hàm số nghịch biến. Bảng b: khi giá trị của x tăng lên thì giá trị tương ứng của y tăng lên vậy y là hàm số đồng biến. Bảng c: khi giá trị của x tăng lên thì giá trị tương ứng của y không thay đổi vậy y là hàm hằng ( hàm số không đồng biến , không nghịch biến). Hàm hằng không đồng biến, không nghịch biếnKiến thức ghi nhớ: 1. Khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x, x gọi là biến số . 2. Đồ thị hàm số: Tập hợp tất cả các điểm biểu diễn cặp giá trị tương ứng (x; f(x)) trên mặt phẳng toạ độ gọi là đồ thị của hàm số y = f(x). + Đồ thị của hàm số y = ax ( a ≠ 0) là đường thẳng đi qua gốc toạ độ. + Khi vẽ đồ thị của hàm số y = ax chỉ cần xác định thêm một điểm thuộc đồ thị khác gốc O. 3. Hàm đồng biến, nghịch biến: Với mọi x1, x2 bất kì thuộc R:Nếu x1 f (x2) thì hàm số y = f( x) nghịch biến trên R.Nhiện vụ về nhà - Bài 1, 3, 4, 5, 6, 7 SGK tr 45 - 46; bài 2,3,4,5 SBT tr56-57. - Bài tập bổ xung ( dành cho HS khá giỏi) Chứng minh với mọi x thuộc R các hàm số sau luôn đồng biến khi a > 0 và nghịch biến khi a < 0 ? a/ y = ax + b b/ y = ax3. - Ghi lại và học thuộc các khái niệm đã học về hàm số, vận dụng vào làm các bài tập dưới đây:Bài 2: SGK tr 45. a/ Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau:x-2,5-2-1,5-1-0,500,511,522,54,25 43,753,52,252,52,7533,2521,75b/ Hàm số đã cho là hàm số đồng biến hay nghịch biến? Vì sao?. Trả lời 2b: Khi x lần lượt nhận các giá trị tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Vậy hàm số đã cho nghịch biến trên R.xin chân thành cám ơn các thầy cô !**

File đính kèm:

  • ppttiet 19 chuong 2 bai 1 nhac lai ve ham so.ppt
Giáo án liên quan