Trên hình sau : có hai tam giác nào bằng nhau ? Vì sao ?
Xét ABM và ACM , có:
AB = AC (gt)
AM : cạnh chung
BM = MC (gt)
Nên ABM = ACM (c.c.c)
Khi nào ta có thể khẳng định được ∆ABC = ∆A’B’C’ ?
Nếu đã có ∆ABC = ∆A’B’C’ thì ta có thể suy ra những
yếu tố nào của hai tam giác đó bằng nhau ?
15 trang |
Chia sẻ: quynhsim | Lượt xem: 796 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Bài giảng môn Hình học lớp 7 - Tiết 24: Trường hợp bằng nhau thứ hai của tam giác cạnh – góc - Cạnh (Tiết 2), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1KÍNH CHÀO QUÝ THẦY CÔ GIÁO VỀ THAM DỰ TIẾT DẠY HÔM NAY !Trên hình sau : có hai tam giác nào bằng nhau ? Vì sao ?Xét ABM và ACM , có: AB = AC (gt) AM : cạnh chung BM = MC (gt)Nên ABM = ACM (c.c.c) A B C M Hình 1 KiÓm tra bµi còKhi nào ta có thể khẳng định được ∆ABC = ∆A’B’C’ ?Nếu đã có ∆ABC = ∆A’B’C’ thì ta có thể suy ra những yếu tố nào của hai tam giác đó bằng nhau ??=A’B’C’ACBBxyAC700- Vẽ Trên tia By lấy điểm C sao cho BC = 3cmTrên tia Bx lấy điểm A sao cho BA = 2cm-Vẽ đoạn thẳng AC ta được tam giác ABC 1. Vẽ tam giác biết hai cạnh và góc xen giữaLưu ý: ta gọi góc B là góc xen giữa hai cạnh AB và BC. Khi nói hai cạnh và góc xen giữa, ta hiểu là góc ở vị trí xen giữa hai cạnh đóTiết 24. TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCcạnh – góc - cạnh (c.g.c)Cách vẽ (SGK) (Quy íc 1cm øng víi 10cm trªn b¶ng)Bµi to¸n: VÏ tam gi¸c ABC biÕt :AB = 2 cm; BC = 3 cm; B = 700Góc A xen giữa hai cạnh nào?Góc A xen giữa hai cạnh AB và ACGóc nào xen giữa hai cạnh AC và BC ?Xen giữa hai cạnh AC và BC là góc CTiết 24. TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCcạnh – góc - cạnh (c.g.c)1. Vẽ tam giác biết hai cạnh và góc xen giữaABC1. VÏ tam gi¸c biÕt hai c¹nh vµ gãc xen gi÷a.Trêng hîp b»ng nhau thø hai cña tam gi¸cC¹nh – gãc – c¹nh (c. g. c)Bµi to¸n: (SGK trang 117) C¸ch vÏ (SGK trang 117).2. Trêng hîp b»ng nhau canh – gãc – c¹nh?1 VÏ tam gi¸c A’B’C’ cã:a) A’B’ = 2cm; B’ = 700; B’C’ = 3 cm.b) H·y ®o ®é dµI c¹nh AC,A’C’ ? Ta cã nhËn xÐt g× vÒ ABC vµ A’B’C’ ?Ta cã: AC = A’C’KÕt luËn ABC = A’B’C’(c¹nh-c¹nh-c¹nh)TÝnh chÊt (SGK/117)Tính chất: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.B’23C’A’700x'y’yB23AC700xA’B’C’BAC BC = B’C’ ABC vµ A’B’C’. AB = A’B’ B = B’ ABC = A’B’C’. GTKLNÕu ABC vµ A’B’C’ cã: AB = A’B’ gãc B = gãc B’ BC = B’C’th× ABC = A’B’C’ (c-g-c)Bài tập: Hai tam giác trên mỗi hình dưới đây có bằng nhau không ? Vì sao ? A B C D + Xét ABC và ADC, có: BC = DC (gt) ACB = ACD (gt) AC : cạnh chung Nên ABC = ADC (c.g.c), + MNP ≠ MQP (c.g.c), Vì: M1 và M2 : Không xen giữa hai cạnh bằng nhau M P 1 2 N QABCDE12 ABD= AED v×: AB = AE gãc A1= gãc A2, AD lµ c¹nh chung BT: Thêm điều kiện để hai tam giác trong mỗi hình vẽ dưới đây là hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh: a) ABC = ADC ( Hình. a ) Thêm điều kiện: AB = DE, AC = DF Thêm điều kiện: BÂC = DÂC D E F A B CHình.b A B C D Hình.ab) ABC = DEF ( Hình. b ) 3. Hệ quả - Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. A B C D E F AC = DF ABC vµ DEF. AB = DE A = D = 900 vu«ngABC = vu«ng DEF. GTKL4) ∆AMB = ∆EMC MAB = MEC (hai gãc t¬ng øng) 1) MB = MC (gt)AMB = EMC (2 gãc ®èi ®Ønh)MA = ME (gt) S¾p xÕp l¹i 5 c©u sau ®©y mét c¸ch hîp lý ®Ó gi¶i bµi to¸n trªn:2) Do ®ã ∆AMB = ∆EMC (c.g.c)5) ∆AMB vµ ∆EMC cã:GT∆ABC MB = MC MA = MEKLAB // CE3) MAB = MEC AB // CE (cã 2 gãc b»ng nhau ë vÞ trÝ so le trong)MAB = MEC∆AMB = ∆EMC MB = MCAMB = EMCMA = MEXÐt ∆AMB vµ ∆EMC2) Do ®ã ∆AMB = ∆EMC (c.g.c)5) ∆AMB vµ ∆EMC cã:3) MAB = MEC AB // CE(cã 2 gãc b»ng nhau ë vÞ trÝ so le trong)1) MB = MC (gt)AMB = EMC (2 gãc ®èi ®Ønh)MA = ME (gt)4)2)1)5)3)Bµi 26 / 118 (SGK)4) ∆AMB = ∆EMC MAB = MEC (hai gãc t¬ng øng) ECBAMTiết 25: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH ( c . g . c )1. Vẽ tam giác biết hai cạnh và góc xen giữa:Bài toán: Vẽ tam giác ABC biết AB =2 cm, BC = 3 cm, góc B = 700.Giải: - Vẽ góc xBy = 700.- Trên tia Bx lấy điểm A sao cho AB = 2 cm.- Trên tia By lấy điểm C sao cho BC = 3 cm.- Nối AC, ta có ABC cần dựng.Lưu ý: (SGK) 2. Trường hợp bằng nhau cạnh – góc – cạnh:Tính chất: + Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.+ Nếu ABC và A’B’C’, có: AB = A’B’ góc B = góc B’ BC = B’C’ thì ABC = A’B’C’ ( c . g . c )3. Hệ quả - Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.yB23AC700xA’B’C’BACHíng dÉn vÒ nhµ - Thuéc, hiÓu kü tÝnh chÊt hai tam gi¸c b»ng nhau trêng hîp (c.g.c) và hÖ qu¶. Lµm c¸c bµi tËp: 24, 28 (SGK) Lµm bµI tËp : 37,38 ( SBT)XIN CHÂN THÀNH CẢM ƠN QUÝ THẦY CÔ GIÁO VỀ THAM DỰ TIẾT DẠY HÔM NAY !
File đính kèm:
- cgc(4).ppt