Bài giảng môn Đại số lớp 12 - Số tiết: 1: Số phức

Về kiến thức: Giúp học sinh :

- Hiểu được nhu cầu mở rộng tập hợp số thực thành tập hợp số phức.

- Hiểu cách xây dựng phép toán cộng số phức và thấy được các tính chất của phép toán cộng số phức tương tự các tính chất của phép toán cộng số thực.

+ Về kĩ năng: Giúp học sinh

- Biết cách biểu diễn số phức bởi điểm và bởi vectơ trên mặt phẳng phức.

- Thực hiện thành thạo phép cộng số phức.

+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.

 

doc37 trang | Chia sẻ: quynhsim | Lượt xem: 513 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng môn Đại số lớp 12 - Số tiết: 1: Số phức, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Số tiết: 1 SỐ PHỨC I. Mục tiêu: + Về kiến thức: Giúp học sinh : Hiểu được nhu cầu mở rộng tập hợp số thực thành tập hợp số phức. Hiểu cách xây dựng phép toán cộng số phức và thấy được các tính chất của phép toán cộng số phức tương tự các tính chất của phép toán cộng số thực. + Về kĩ năng: Giúp học sinh Biết cách biểu diễn số phức bởi điểm và bởi vectơ trên mặt phẳng phức. Thực hiện thành thạo phép cộng số phức. + Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, phiếu học tập. + Học sinh: Các kiến thức đã học về các tập hợp số. III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm. IV. Tiến trình bài dạy: 1. Ổn định tổ chức: Ổn định lớp, điểm danh. 2. Bài mới: Hoạt động 1: Hình thành khái niệm số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng HĐTP1: Mở rộng tập số phức từ tập số thực H: Cho biết nghiệm của PT x2 – 2 = 0 trên tập Q? Trên tập R? GV: Như vậy một PT có thể vô nghiệm trên tập số này nhưng lại có nghiệm trên tập số khác. H: Cho biết nghiệm của PT x2 + 1 = 0 trên tập R? GV: Nếu ta đặt i2 = - 1 thì PT có nghiệm ? GV: Như vậy PT lại có nghiệm trên một tập số mới, đó là tập số phức kí hiệu là C. HĐTP2: Hình thành khái niệm về số phức H : Cho biết nghiệm của PT (x-1)2 + 4 = 0 trên R? Trên C? GV: số 1 + 2i được gọi là 1 số phức => ĐN1: GV giới thiệu dạng z = a + bi trong đó a, b R, i2 = - 1, i: đơn vị ảo, a: phần thực, b: phần ảo. H: Nhận xét về các trường hợp đặc biệt a = 0, b = 0? H: Khi nào số phức a + bi =0? H: Xác định phần thực, phần ảo của các số phức sau z = 3 + i và z’ = - i? H: Hai số phức z = a + bi và z’ = a’ + b’i bằng nhau khi nào ? => ĐN2 Đ: PT vô nghiệm trên Q, có 2 nghiệm x = , x = - trên R Đ: PT vô nghiệm trên R. Đ: PT x2 = - 1 = i2 có 2 nghiệm x = i à x = - i Đ: PT vô nghiệm trên R, có 2 nghiệm x = 1 + 2i và x = 1 – 2i trên C. Nhắc lại ĐN về số phức Đ: b=0: z = a R C a =0: z = bi Đ: a = 0 và b = 0 HS trả lời Đ: a = a’ và b = b’ 1. Khái niệm số phức: * ĐN1 : sgk * Chú ý: + Số phức z = a + 0i = a R C: số thực + Số phức z = 0 + bi = bi: số ảo + Số 0 = 0 + 0i = 0i : vừa là số thực vừa là số ảo. ĐN2: sgk Hoạt động 2: Biểu diễn hình học số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Ta đã biết biểu diễn số thực trên trục số ( trục Ox) tương tự ta cũng có thể biểu diễn số ảo trên trục Oy ^Ox. Mặt phẳng Oxy gọi là mặt phẳng phức. Một số phức z=a+bi được biểu diến hình học bởi điểm M(a,b) trên mặt phẳng Oxy H: Biểu diến các số sau: z=-2 z1=3i z2=2-i Nghe hiểu HS: Biểu diến hình học 2. Biểu diễn hình học của số phức: O y M(z) a b x Hoạt động 3: Tiếp cận định nghĩa và tính chất phép cộng số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H: z1=2-3i ; z2=-1+i Tính z1+z2=? H: Cho z=a+bi, z’=a’+b’i. Tính z+z’? ® định nghĩa 3 H: Nhắc lại các tính chất của số thực? Gv: số phức cũng có các tính chất tương tự số thực ® nêu các tính chất Đ: z1+z2=1-2i Đ: z+z’=a+a’+(b+b’)i Đ: Trả lời câu hỏi của GV Nghe, ghi nhớ 3. Phép cộng và phép trừ số phức: a. Phép cộng số phức: ĐN3: (sgk) b. Tính chất của phép cộng số phức: sgk Hoạt động 4: Bài tập vận dụng Phiếu học tập: Cho số phức z = 2-3i Xác định phần thực, phần ảo Biểu diến hình học số phức z Xác định số đối của z và biểu diễn hình học trong mặt phẳng phức 4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT 1, 2, 3 trang 189 SGK, học bài và xem bài mới SỐ PHỨC (Tiết 2) I. Mục tiêu: + Về kiến thức: Giúp học sinh : Hiểu cách xây dựng phép trừ số phức từ phép toán cộng. Hiểu cách xây dựng phép nhân số phức từ phép toán cộng và nhân các biểu thức dạng a + bi. Thấy được các tính chất của phép nhân số phức tương tự phép nhân số thực. + Về kĩ năng: Giúp học sinh thực hiện thành thạo phép trừ, nhân số phức. + Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, phiếu học tập. + Học sinh: Học bài cũ và làm bài tập ở nhà. III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm. IV. Tiến trình bài dạy: 1. Ổn định tổ chức: Ổn định lớp, điểm danh. 2. Kiểm tra bài cũ: TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H: Cho 2 số phức z = -2 + i, z’ = 1 – 3i Tìm số đối của z’ Tính tổng z + (-z’) GV: Nhận xét z + (-z’) = -2 + i + (-1) +3i = -2 + i - (1-3i) = z – z’ => ĐN hiệu 2 số phức Nghe, hiểu và thực hiện nhiệm vụ Đ: - z’ = -1 + 3i z + (-z’) = -2 + i + (-1) +3i = - 3 + 4i HS trình bày lời giải 3. Bài mới: Hoạt động 1: TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng GV đưa ra quy tắc tính hiệu 2 số phức H: z = 2 - 3i, z’ = - 3 – i Tính z -z’ Đ: z -z’ = 5 – 2i 3. Phép cộng và trừ số phức: c. Phép trừ 2 số phức: * ĐN4: sgk’ * NX: Cho z = a + bi, z’ = a’ + b’i. Khi đó z – z’ = a – a’ + (b – b’)i Hoạt động 2: Ý nghĩa hình học của phép cộng và phép trừ số phức: TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng NX: Cho điểm M(a;b) biểu diễn số phức z = a + bi, khi đó vectơ cũng biểu diễn cho số phức z = a + bi H: Cho z = 2 -3i , z’= -1+2i Tìm các vectơ và biểu diễn các số phức z và z’. Tìm tọa độ của vectơ + , - và tính z + z’, z – z’ H: NX gì về mối liên hệ giữa tọa độ + và z + z’, - và z – z’ Nghe, hiểu và thực hiện nhiệm vụ. HS lên bảng và trình bày lời giải. (2;-3), (-1;2) + = (1;-1) z + z’= 1 – i - = (3;-5) z – z’ = 3 – 5i KL: Nếu và biểu diễn cho số phức z và z’ thì vectơ + , - biểu diễn cho số phức z + z’, z – z’. Hoạt động 3: Tiếp cận phép nhân số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H: Cho z=a+bi, z’=a’+b’i. Tính z.z’=? H: Tính z.z’ biết z=2-5i, z’=+2i z=3-i, z’=3+i Gv hướng dẫn học sinh lưu ý dùng hằng đẳng thức a2-b2 H: Tính 3(2-5i) ® Tổng quát hóa công thức k(a+bi) H: Cho số phức z=a+bi Tính z2 Tìm những đặc điểm của mặt phẳng phức biểu diễn các số phức z sao cho z2 là số thực? Dùng tính chất phân phối của phép nhân và phép cộng thông thường để đưa ra kết quả - Áp dụng công thức đưa ra kết quả - HS trình bày kết quả lên bảng Nêu công thức Hs trình bày lời giải z2=a2-b2+2abi z2ÎRÛa=0 hoặc b=0 Vậy tập hợp những điểm M nằm trên trục thực hoặc trục ảo 4. Phép nhân số phức: ĐN5: sgk zz’=aa’-bb’+(ab’+a’b) Hs trình bày bảng Lưu ý: k(a+bi)=ka+kbi Lưu ý: Có thể dùng hằng đẳng thức để tính giống như cộng, trừ, nhân, chia thông thường Hoạt động 5: Tính chất của phép nhân số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng VD: Hãy phân tích z2+4 thành nhân tử Gv hướng dẫn hs đặt i2=-1 rồi phân tích theo hằng đẳng thức Hs thực hiện z2-4i2=z2-(2i)2 Tính chất của phép nhân số phức: sgk Đặt i2=-1 z2+4=z2-4i2 =(z-2i)(z+2i) 4. Củng cố toàn bài: Nhắc lại các tính chất của phép nhân các số phức 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: BT sgk Số tiết: 1 ChươngIV§1 SỐ PHỨC (Tiết 3) I. Mục tiêu: + Về kiến thức: Giúp học sinh : Hiểu cách định nghĩa số phức liên hợp và 2 tính chất cơ bản liên quan đến khái niệm này là số phức liên hợp của tổng, tích và mô đun của số phức. Hiểu được định nghĩa và phép chia cho số phức khác 0. + Về kĩ năng: Giúp học sinh Biết xác định số phức liên hợp. Thực hiện thành thạo phép chia số phức. + Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, phiếu học tập. + Học sinh: Học bài cũ và làm bài tập ở nhà. III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm. IV. Tiến trình bài dạy: 1. Ổn định tổ chức và kiểm tra bài cũ: H1: Nêu các phép cộng, trừ, nhân số phức và các tính chất của các phép toán trên H2: Áp dụng tính (3-i)(1+2i) 2. Bài mới: Hoạt động 1: Số phức liên hợp TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Tìm biểu thức liên hợp của và a, bÎR* Gv liên hệ đưa ra định nghĩa số phức liên hợp Cho ví dụ: Gọi hs cho vài ví dụ có biểu thức liên hợp là Cho ví dụ Định nghĩa: Số phức liên hợp của z=a+bi với a,bÎR là a-bi kí hiệu là Þ Hoạt động 2: Làm H6 và H7 sgk TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Gọi học sinh chứng minh số phức z là số thực z= Nhận xét và ghi bảng. Gọi học sinh chứng minh z= a2 +b2 Trình bày cách chứng minh . Nhận xét. Nêu cách chứng minh HS: Biểu diến hình học z là số thực => z=a+0i=a =>= a-0i=a. Ngược lại z= tức là a+bi = a-bib=0. => z là số thực Hoạt động 3: Mô đun của số phức TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Vẽ hệ trục trục tọa độ: Ta có = = . Đưa ra định nghĩa . Đưa ra ví dụ Học sinh nêu lại công thức tính độ dài (Mô đun) của véctơ =(a,b) O y M(z) a b x Đn: SGK = Vd: =1 =. Chú ý: z R => là giá trị tuyệt đối. z=0=>=0 Phép chia cho số phức khác 0 TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho z = a + bi (a,b R) . z – 1 = = == Vậy z . z – 1 = = 1 Cho ví dụ : Học sinh nắm cách biến đổi Rút ra nghịch đảo của số phức Đn: z 0 => z – 1 = Thương =z’.z – 1 = Hoạt động 5: Bài tập củng cố Phiếu học tập: Cho số phức z=2+3i, z’=2-3i Tính, , , Tìm Mô đun z, z’, z.z’ Tính , 4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT còn lại trang 190, 191 SGK, học bài và xem bài mới Số tiết: 1 ChươngIV §1 LUYỆN TẬP SỐ PHỨC ( chương trình nâng cao ) I. Mục tiêu: + Về kiến thức: Giúp học sinh : Ôn lại kiến thức lý thuyết về số phức đã học Làm được các bài tập sách giáo khoa. + Về kĩ năng: Rèn cho học sinh kĩ năng thực hiện các phép tính với số phức. + Về tư duy và thái độ: - Tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, phiếu học tập. + Học sinh: Các kiến thức đã học về các tập hợp số. III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm. IV. Tiến trình bài dạy: 1. Ổn định tổ chức: Ổn định lớp, điểm danh. 2. Kiểm tra bài cũ: (5’) Câu hỏi: cho z = - 2 + 3i Hãy tính : 1+z+z, GV gọi HS lên bảng giải. GV nhận xét và cho điểm. 3. Bài mới: Hoạt động 1: giải bài tập 10 ( chứng minh ) TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ GV ghi đề bài tập 10 GV nhắc lại nhận xét: =w zw = z’ Gọi HS nêu hướng giải Gọi HS lên bảng giải GV nhận xét và kết luận HS lắng nghe HS nêu hướng giải HS lên bảng giải LUYỆN TẬP Bài10.CMRsố phức z1: 1+z+z+..+z = Giải: (1+z+z+..+z)(z-1) = z+z+..+z-(1+z+..+z) = z- 1 1+z+z+..+z = Hoạt động 2 : giải bài tập 11 ( hỏi số sau là số thực hay số ảo , với số phức z tùy ý ) TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 10’ GV ghi đề bài tập 11 a,c GV cung cấp cho HS = Từ =., gọi HS nhận xét = ? GV: làm sao biết số phức có thể là số thực hay số ảo? GV: gọi 2 HS lên tìm số phức liên hợp GV: gọi HS nhận xét lại GV: giảng giải và kết luận GV: gọi HS nêu hướng giải quyết câu b và nêu pp giải để HS về nhà giải = = .= z.z = z HS: nếu z = thì z là số thực nếu z = - thì z là số ảo HS1 : lên bảng HS2 : lên bảng HS : nhận xét HS : nêu hướng Bài 11 : a) = +z = z+ z+ là số thực c) = == - là số ảo Hoạt động 3: giải bài tập 12 ( xác định tập hợp các điểm trong mặt phẳng biểu diễn các số phức z thỏa mãn các điều kiện TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 10’ GV: ghi đề bài tập 12 a,d GV: số phức z = a+bi thì số phức z= ? GV: vậy z là số thực âm thì a,b có điều kiện gì ? GV: gọi HS1 lên bảng giải. GV: để là số ảo thì ? GV: gọi HS2 lên bảng giải GV: gọi HS nhận xét GV: giảng giải và kết luận GV: tt câu a, nếu zlà số thực dương hay số phức thì ntn ? GV: kết lại pp cho HS về tự làm HS: z= a- b+ 2abi HS: 2ab = 0 và a- b< 0 HS1: lên bảng giải. HS: z-i là số ảo . HS2 : lên bảng giải HS : nhận xét HS : trả lời Bài 12: a) zlà số thực âm a = 0 và b 0 Vậy tập hợp các điểm biểu diễn số phức z là trục Oy trừ điểm O(0;0) d) là số ảo z-i là số ảo và zi z là số ảo và zi Vậy tập hợp các điểm bd số phức z là trục ảo trừ điểm I(0 ;1) Hoạt động 4 : giải bài tập 13 ( giải phương trình ẩn z ) TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 13’ GV ghi đề bài tập 13 a,b,d GV gọi HS nêu cách giải a GV: làm sao để khử i dưới mẫu GV: gọi HS lên bảng GV: gọi HS nêu pp giải b GV: lưu ý HS nhân mẫu 1+3i với liên hợp của nó là 1-3i để rut gọn số phức GV: gọi HS nêu pp giải d GV: gọi HS lên bảng giải b,d GV: gọi HS nhận xét bài làm của các bạn GV: giảng giải lại và kết luận. HS: iz = -2 + i z = HS: trả lời HS1: lên bảng HS: chuyển vế đặt z chung . HS: phương trình tích .. 2HS: lên bảng HS: nhận xét Bài 13: giải phương trình iz + 2 – i = 0 iz = -2 + i z = = = 1 + 2i (2+3i)z = z – 1 (1+3i)z = - 1 z== == - +i d)(iz-1)(z+3i)(-2+3i)=0 4. Củng cố toàn bài: ( 2’) GV nhắc lại : + nếu z = thì zlà số thực ; nếu z = - thì z là số ảo +nhắc lại về cách giải phương trình ẩn z 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm phần còn lại BT 11,12,13 và BT14,15,16 SGK, học bài và xem bài mới Nhóm toán B5 Số tiết: 1 ChươngIV §1 BÀI TẬP SỐ PHỨC I.Mục tiêu: + Kiến thức: - Hiểu được khái niệm số phức, phân biệt phần thực phần ảo của một số phức. - Biết biểu diễn một số phức trên mặt phẳng phức. - Hiểu ý nghĩa hình học của khái niệm mô đun và số phức liên hợp. +Kĩ năng: - Biết xác định phần thực phần ảo của một số phức cho trước và viết được số phức khi biết được phần thực và phần ảo. - Biết sử dụng quan hệ bằng nhau giữa hai số phức để tìm điều kiện cho hai số phức bằng nhau. - Biết biểu diễn tập hợp các số phức thỏa điều kiện cho trước trên mặt phẳng tọa độ. - Xác định mô đun, số phức liên hợp của một số phức. +Thái độ: Nghiêm túc, hứng thú khi tiếp thu bài học, tích cực hoạt động. II.Chuẩn bị của giáo viên và học sinh: +Giáo viên : Giáo án, bảng phụ, phiếu học tập. +Học sinh: làm bài tập trước ở nhà. III.Phương pháp: Phối hợp các phương pháp gợi mở, nêu vấn đề, luyện tập, vấn đáp. IV.Tiến trình bài học: 1.Ổn định tổ chức: 1/ 2.Kiểm tra bài cũ kết hợp với giải bài tập. 3.Bài mới HOẠT ĐỘNG 1: BT 2/189 sgk TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng +Gọi học sinh cho biết dạng của số phức.Yêu cầu học sinh cho biết phần thực phần ảo của số phức đó. +Gọi một học sinh giải bài tập 2/189. HD HS đưa về số phức dạng a + bi, lưu ý i2 = -1 +Gọi học sinh nhận xét +Trả lời +Trình bày +Nhận xét z = a + bi a:phần thực b:phần ảo HOẠT ĐỘNG 2: BT 5/190 sgk TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho Tính , , z2 , 3, 1+z+z2 GV: Cho HS nhắc lại công thức: z – 1 = = |z| = ?, = ? + Nhận xét bài làm. +Trả lời +Trình bày +Nhận xét Lời giải của HS HOẠT ĐỘNG 3: BT 12/191 sgk TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Xác định tập hợp các điểm trong mp phức biểu diễn các Cho z = a + bi. Tìm + Gọi hai học sinh giải bài tập 4a,c,d và bài tập 6 + Nhận xét bài làm + Phát phiếu học tập 1 +Trả lời +Trình bày +Trả lời +z = a + bi + + HOẠT ĐỘNG 4 TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Nhắc lại cách biểu diễn một số phức trên mặt phẳng và ngược lại. +Biểu diễn các số phức sau Z = -2 + i , z = -2 – 3i , z = -2 + 0.i +Yêu cầu nhận xét các số phức trên + Yêu cầu nhận xét quĩ tích các điểm biểu diễn các số phức có phần thực bằng 3. + Vẽ hình +Yêu cầu học sinh làm bài tập 3c. +Gợi ý giải bài tập 5a. +Yêu cầu học sinh giải bài tập 5b +Nhận xét, tổng kết +Biểu diễn +Nhận xét quĩ tích các điểm biểu diễn. +Trình bày +Nhận ra là phưong trình đương tròn tâm O (0;0), bán kính bằng 1. +Trình bày Củng cố: Hướng dẫn bài tập còn lại Phụ lục: Phiếu học tập 1: Câu 1: cho . Phần thực và phần ảo lần lược là A. B. C. D. Câu 2: Số phức có phần thực bằng ,phần ảo bằng là A. B. C. D. Câu 3: . Khi đó khi A. m = -1 và n = 3 B. m = -1 và n = -3 C. m = 1 và n = 3 D. m = 1 và n = -3 Câu 4: lần lượt bằng A. B. C. D. Ngày soạn:................ Số tiết : 02 Bài Soạn: ChươngIV §2 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI( tiết 1) I. Mục tiêu: + Về kiến thức: Giúp cho HS Hiểu được ĐN căn bậc hai của số phức; Biết cách đưa việc tìm căn bậc hai của số phức về việc giải một hệ phương trình hai ẩn thực; Biết cách giải một phương trình bậc hai. + Về kỹ năng: Giúp cho HS Tìm được căn bậc hai của số phức; Giải được PTB2 với hệ số phức; + Về tư duy và thái độ: Có tư duy logic; Có tính độc lập và hợp tác trong giờ học. II. Chuẩn bị của GV và HS: GV: giáo án; SGK;.... HS: SGK. III. Phương pháp: Sử dụng lồng ghép các phương pháp một cách linh hoạt trong bài dạy như: gợi mở vấn đề, thuyết trình, vấn đáp, ...; trong đó gợi mở vấn đề giữ vai trò chủ đạo trong giờ học. IV. Tiến trình bài học: Ổn định tổ chức lớp học:1ph Kiểm tra bài cũ:(7ph) Câu hỏi: Trình bày các định nghĩa: Số phức, hai số phức bằng nhau, số phức liên hợp. Bài tập: Tính với Bài mới: Các em đã được học căn bậc hai của số thực a dương. Hôm nay chúng ta đi tìm hiểu ĐN căn bậc hai của số phức và những ứng dụng của nó. Hoạt động 1 : TG Hoạt động của GV Hoạt động của HS Ghi bảng 15/ + GV: Đọc ĐN căn bậc hai của số phức. + Dựa vào ĐN, hãy tìm căn bậc hai của số thực w với w bằng 0; 9; -4. + GV cho HS nhận xét các VD trên và từ đó khái quát hoá cho số thực . + GV cần định hướng HS để giải quyết vấn đề trên. * Với Xét phương trình . * Với . Hãy xét phương trình . + GV nhận xét đánh giá chung và ghi bảng. + GV: Cho HS nhận xét VD1 + GV: Đối với trường hợp w là số phức thì sao? Việc tìm că bậc hai của nó như thế nào? + Hs nghe đọc ĐN, đọc lại ĐN , tiếp thu và ghi nhớ. + Căn bậc hai của 0 là 0; Căn bậc hai của 9 là 3 và -3; Căn bậc hai của -4 là 2i và -2i; + HS thảo luận theo từng bàn, nhóm.Từ đó khái quát hoá cho trường hợp số thực . * Với số thực .ta có Như vậy z có hai căn bậc hai là * Với số thực .ta có Như vậy z có hai căn bậc hai là + HS đọc Vd và sau đó trả lời. + HS nhận thức vấn đề cần nghiên cứu. 1. Căn bậc hai của số phức: ĐN: (SGK tr192) a) Trường hợp w là số thực: Hoạt động 2: Tìm hiểu căn bậc hai của số phức TG Hoạt động của GV Hoạt động của HS Ghi bảng 12/ + GV: giả sử trong đó x, y là số thực. + GV: z là căn bậc hai của w khi nào? Hày tìm mối liên hệ giữa x;y với a;b. + Như vậy, theo ĐN mỗi cặp (x;y) nghiệm đúng của HPT (*) cho ta một căn bậc hai x+yi của số phức . GV: Nhận xét , chỉnh sửa, kết luận vấn đề và ghi bảng. + z là căn bậc hai của w khi và chỉ khi + HS hiểu cách tìm căn bậc hai của số phức sau khi GV đã kết luận và ghi bảng. a) Trường hợp w là số phức với Hoạt động 3: Xét VD 2 và phần ghi nhớ TG Hoạt động của GV Hoạt động của HS Ghi bảng 19/ + GV: gọi 1 HS nhắc lại cách tìm căn bậc hai của số phức + GV: gọi 1HS làm VD2 SGK + GV: Cho HS nhận xét bài làm trên bảng ; sau đó kết luận. + GV: Cho HS đọc VD2 câu b tr193 + GV: Cho HS thảo luận nhóm bài 17 SGK tr195 và sau đó kết luận bài toán. + GV ghi phần tổng quát ở SGK tr194 + Hs nghiên cứu VD và làm theo định hướng của GV. + Gọi là căn bậc hai của số phức khi đó ta có: Hệ có hai nghiệm (2;3), (-2;-3) Vậy , hệ có hai căn bậc hai của -5+12i là 2+3i và -2-3i + Hs đọc sách VD2: SKG tr193 a) Tìm căn bậc hai của số phức w = -5+12i b) Tìm căn bậc hai của số i. V. Củng cố bài học:2ph - GV nhắc lại cách tìm căn bậc hai của số phức. - Yêu cầu HS hoàn thành bài 17;18 sgk tr195,196 - Đọc phần 2 của bài này. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI ( tiết 2) Hoạt động 1 :Nghiên cứu cách giải PTB2 TG Hoạt động của GV Hoạt động của HS Ghi bảng 15/ + GV: Cho HS nghiên cứu cách giải PTB2 ẩn phức ở SGK + GV: PTB2 ẩn phức có nghiện khi nào? + GV: nhận xét các cách trả lời của HS . Từ đó kết luận chung và ghi bảng. + HS nhận nhiệm vụ và làm việc theo định hướng của GV. + PTB2 ẩn phức luôn có hai nghiệm (có thể trùng nhau) 2. Phương trình bậc hai: (SGK tr193) Hoạt động 2 :Rèn luyện kỹ năng giải PTB2 TG Hoạt động của GV Hoạt động của HS Ghi bảng 10/ + GV: Cho 1 HS nêu lại các bước giải PTB2 + Áp dụng các bước giải này, hãy GPT: + Lập biệt thức delta + Hãy viết công thức nghiệm + GV nhận xét chỉnh sửa + GV: Cho HS tìm hiểu VD3b + HS trả lời. + + VD3: a). GPT: b) GPT: Hoạt động 3 :Hướng dẫn HS xét H2 ở SGK TG Hoạt động của GV Hoạt động của HS Ghi bảng 12/ + GV: Tính + Tìm số liên hợp của a+bi + Nếu thì Pt có nghiệm như thế nào? + Hãy tìm . + Nếu thì PT có nghiệm thế nào? + Nếu + GV: Kết luận chung + GV: Ta đã biết PTB2 có hai nghiệm phức . Từ đó khái quát hóa cho phương tình + + a-bi + + + HS sử dụng số liên hợp đpcm + + Tiếp thu và chấp nhận kết quả này. VD4: Cho PT . Với A,B,C là các số thực và A khác 0. Chứng mnh rằng C là 1 nghiệm của PT thì cũng là 1 nghiệm của phương trình. CỦNG CỐ BÀI HỌC:8ph Về kiến thức: Nắm cách tìm căn bậc hai của số phức và các tiến hành giải PTB2 Dặn dò: Học thuộc ĐN, Đlí Giải Bt SGK Giải thêm các bài tập:Giải PT Số tiết: 1 ChươngIV §2 LUYỆN TẬP CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI (Chương trình nâng cao) I. Mục tiêu: + Về kiến thức: Khi học xong phần này, học sinh hiểu rõ hơn về căn bậc hai của số phức cũng như cách giải phương trình bậc hai trên tập số phức + Về kĩ năng: Giúp học sinh rèn luyện kỹ năng về tìm căn bậc hai của số phức và kỹ năng giải phương trình bậc hai trên tập số phức + Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học si + Giáo viên: Giáo án và các tài liệu liên quan + Học sinh: Các kiến thức đã học về định nghĩa căn bậc hai của số phức và công thức nghiệm của phương trình bậc hai trên tập số phức III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp IV. Tiến trình bài dạy: 1. Ổn định tổ chức: Ổn định lớp, điểm danh. 2. Kiểm tra bài cũ Câu hỏi 1: TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ +Hỏi: Định nghĩa căn bậc hai của số phức, tìm căn bậc hai của các số phức: -5 và 3+4i +Hướng dẫn HS giải hệ phương trình bằng phương pháp thế +Nhận xét ghi điểm và hoàn chỉnh Một học sinh trả lời và trình bày lời giải Giải hệ phương trình + Căn bậc hai của -5 lài và -i vì (i)2= -5 và (-i)2= -5 +Gọi x+yi (x,yR) là căn bậc hai của số phức 3 + 4i ta có: (x + yi)2 =3 + 4i Hệ trên có hai nghiệm là và Vậy có hai căn bậc hai của 3+4i là :2+i và -2-i Câu hỏi 2: TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ +Hỏi: Nêu công thức nghiệm của phương trình Az2 +Bz +C = 0, với A, B, C là các số phức và A khác không. Áp dụng làm bài tập 23a, 23c +Một học sinh trả lời và làm bài trên bảng +Hướng dẫn HS đưa về pt bậc hai +Nhận xét ghi điểm và hoàn chỉnh +Đưa pt đã cho về phương trình bậc hai và lập biệt thức +Kết luận nghiệm ứng với mỗi giá trị của k PT: z+=k Với k= 1 thì = -3 Vậy phương trình có các nghiệm là:và c. Với k = 2i thì = -8 Vậy phương trình có các nghiệm là: , 3. Bài mới: Hoạt động 1: Giải bài tập 24/199 - HĐTP 1:Gọi HS lên bảng giải bài tập 24a TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ + Đọc đề bài tập 24a +H: +Hướng dẫn HS biểu diễn các nghiệm trên mặt phẳng phức +Nhận xét và hoàn chỉnh + +Tìm nghiệm phức các pt: z+1 = 0 và +Biểu diễn các nghiệm trên mặt phẳng phức a. z+1=0 Các nghiệm của pt là: HĐTP 2: Gọi HS lên bảng làm bài tập 24d TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ + Đọc đề bài tập 24d +Hướng dẫn biến đổi pt đã cho +Hướng dẫn HS biểu diễn các nghiệm trên mặt phẳng phức +Nhận xét và hoàn chỉnh +Biến đổi phương trình đã cho để có thể sử dụng công thức nghiệm của pt bậc hai + Tìm các nghiệm phức của các pt: +Biểu diễn các nghiệm trên mặt phẳng phức d. z + 1= 0 z = -1 z = Vậy các nghiệm của pt là: Hoạt động 2: Giải bài tập 25/199 - HĐTP 1:Gọi HS lên bảng giải bài tập 25a TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 4’ + Đọc đề bài tập 25a + Nhấn mạnh 1 + i là nghiệm của pt (a) +Nhận xét và hoàn chỉnh +Phát hiện được 1 + i thỏa pt (a) a. Tìm các số thực b, c để pt (ẩn z) (a) nhận z =1+i làm một nghiệm Giải: Vì 1+i là một nghiệm của (a) nên: - HĐTP 2:Gọi HS lên bảng giải bài tập 25b TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 6’ + Đọc đề bài tập 25b + Nhấn mạnh 1 + i và 2

File đính kèm:

  • docchuong 4.doc