Bài giảng môn Đại số lớp 11 - Bài 1: Khái niệm đạo hàm

Khi nào thì hàm số y = f(x) được gọi là

liên tục tại điểm x0?

Định nghĩa:

Giả sử hàm số f xác định trên khoảng (a; b) và x0(a;b). Hàm số f được gọi là liên tục tại điểm x0 nếu

 

ppt15 trang | Chia sẻ: quynhsim | Lượt xem: 582 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 11 - Bài 1: Khái niệm đạo hàm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
KIỂM TRA BÀI CŨKhi nào thì hàm số y = f(x) được gọi là liên tục tại điểm x0?Định nghĩa:Giả sử hàm số f xác định trên khoảng (a; b) và x0(a;b). Hàm số f được gọi là liên tục tại điểm x0 nếu Chương 5. ĐẠO HÀMBài 1. Khái niệm đạo hàm1. Ví dụ mở đầu:Từ một vị trí O (ở một độ cao nhất định nào đó), ta thả một viên bi rơi tự do xuống đất và nghiên cứu chuyển động của viên bi.Chuyển động rơi tự do●●(tại t0)(tại t1)f(t0)f(t1)M1M0●OyChọn trục Oy theo phương thẳng đứng, chiều dương hướng xuống đất, gốc O là vị trí ban đầu của viên bi (tại thời điểm t=0) và bỏ qua sức cản của không khí.Phương trình chuyển động của viên bi: 1. Ví dụ mở đầu:Chuyển động rơi tự doO●●●(tại t0)(tại t1)f(t0)f(t1)M1M0yPhương trình chuyển động của viên bi: Vận tốc tức thời tại thời điểm t0 của viên bi:Bài toán: Tìm giới hạntrong đó y= f(x) là hàm số.Giới hạn này nếu có và hữu hạn thì được gọi là đạo hàm của hàm số y = f(x) tại điểm x0.2. Đạo hàm của hàm số tại một điểma) Khái niệm đạo hàm của hàm số tại một điểmGiới hạn hữu hạn (nếu có) của tỉ số khi x dần đến x0 được gọi là đạo hàm của hàm số đã cho tại điểm x0, kí hiệu là f’(x0) hoặc y’(x0), nghĩa là:ĐỊNH NGHĨA: Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 thuộc khoảng đó.2. Đạo hàm của hàm số tại một điểma) Khái niệm đạo hàm của hàm số tại một điểmCHÚ Ý1) Số Δx = x – x0: số gia của biến số tại điểm x0 .Số Δy = f(x0+ Δx)-f(x0): số gia của hàm số ứng với số gia Δx tại điểm x0.2) Số Δx không nhất thiết chỉ mang dấu dương.3) Δx, Δy là những kí hiệu, không được nhầm lẫn rằng: Δx là tích của Δ với x, Δy là tích của Δ với y. H1. Tính số gia của hàm số y = x2 ứng với số gia Δx của biến số tại điểm x0 = -2?2. Đạo hàm của hàm số tại một điểma) Khái niệm đạo hàm của hàm số tại một điểmb) Quy tắc tính đạo hàm theo định nghĩaMuốn tính đạo hàm của hàm số f tại điểm x0 theo định nghĩa ta thực hiện hai bước sau:*Bước 1: Tính Δy theo công thức Δy = f(x0+Δx)-f(x0) trong đó Δx là số gia của biến số tại x0.*Bước 2: Tìm giới hạn .Ví dụ 1: Tính đạo hàm của mỗi hàm số sau tại điểm x0: y = x2 tại điểm x0 = 3. y =|x| tại điểm x0 = 0 y= tại điểm x0 = 0.2. Đạo hàm của hàm số tại một điểma) Khái niệm đạo hàm của hàm số tại một điểmb) Quy tắc tính đạo hàm theo định nghĩaNhận xét: Nếu hàm số y= f(x) có đạo hàm tại điểm x0 thì nó liên tục tại điểm x0.Chứng minhGiả sử hàm số y = f(x) có đạo hàm tại x0, tức là Ta có Vậy hay hàm số f liên tục tại x0. f’(x0).0 = 02. Đạo hàm của hàm số tại một điểma) Khái niệm đạo hàm của hàm số tại một điểmb) Quy tắc tính đạo hàm theo định nghĩaNhận xét: Nếu hàm số y= f(x) có đạo hàm tại điểm x0 thì nó liên tục tại điểm x0.Chú ý:* Nếu hàm số y = f(x) gián đoạn tại x0 thì không có đạo hàm tại điểm đó.* Một hàm số liên tục tại một điểm có thể không có đạo hàm tại điểm đó. Ví dụ: hàm số y = |x| liên tục tại x 0= 0 nhưng không có đạo hàm tại điểm này.3. Ý nghĩa hình học của đạo hàmx0xMf(x0)f(xM)M0MT(C)●●kM: hệ số góc của cát tuyến M0M. H Đường thẳng M0T đi qua M0 và có hệ số góc k0Oyx Đường thẳng M0T được gọi là tiếp tuyến của (C) tại M0, còn M0 được gọi là tiếp điểm.Giả sử tồn tại giới hạn hữu hạn là vị trí giới hạn của cát tuyến M0M khi M di chuyển dọc theo (C) dần đến M0.(C): y = f(x)3. Ý nghĩa hình học của đạo hàmH2:Dựa vào kết quả của ví dụ 1, câu a, hãy viết Phương trình tiếp tuyến của đồ thị hàm số y = f(x) = x2 tại điểm M(3;9)?VD1a: f’(3) = 64. Ý nghĩa cơ học của đạo hàm- Xét sự chuyển động của một chất điểm. Phương trình chuyển động của chất điểm là s = s(t).Khi |Δt| càng nhỏ (khác 0) thì tỉ số càng phản ánh chính xác độ nhanh, chậm của chuyển động tại thời điểm t0.●●s(t0)s(t0+Δt)Δt- Người ta gọi giới hạn hữu hạn (nếu có)là vận tốc tức thời của chuyển động tại thời điểm t0.=s’(t0)H3: Một chất điểm chuyển động có phương trình s = t2 (s tính bằng mét, t tính bằng giây). Vận tốc tức thời của chất điểm tại thời điểm t0 = 3(giây) bằng: (A) 3m/s; (B) 4m/s; (C) 5m/s; (D) 6m/s.4. Ý nghĩa cơ học của đạo hàm(D) 6m/s.CỦNG CỐ - HƯỚNG DẪN VỀ NHÀ*Tính được đạo hàm của hàm số tại một điểm dựa vào định nghĩa.(Bài 1,2,3/SGK)*Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x). (Bài 4,5/SGK)- Biết toạ độ tiếp điểm.- Biết hoành độ (hoặc tung độ) của tiếp điểm.-Biết hệ số góc của tiếp tuyến.(k = f’(x0))- Tiếp tuyến đi qua M(a;b) không thuộc đồ thị hàm số.Δ: y = f’(x0) (x – x0) + f(x0)M(a; b) Δ nên b = f’(x0) . (a – x0) + f(x0) →x0*Tính vận tốc tức thời của một chuyển động. (Bài 6/SGK)

File đính kèm:

  • pptDHAM.ppt