Bài giảng lớp 9 môn Toán học - Tiết 24: Liên hệ giữa dây và khoảng cách đến tâm

Bài toán : Cho AB và CD là hai dây (khác đường kính) của

( O; R). Gọi OH, OK theo thứ tự là các khoảng cách từ O đến AB, CD.

Chứng minh :

OH2 + HB2 = OK2 + KD2

 

ppt17 trang | Chia sẻ: quynhsim | Lượt xem: 704 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng lớp 9 môn Toán học - Tiết 24: Liên hệ giữa dây và khoảng cách đến tâm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Kiểm tra bài cũ Hóy nờu những kết luận suy ra được từ hỡnh vẽAB > CD IM = IN AB CD Tiết 24LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂM1. Bài toỏnáp dụng địng lí Pi- ta - go ::∆OHB: OH2 + HB2 = OB2 = R2∆OKD: OK2 + KD2 = OD2 = R2 OH2 + HB2 = OK2 + KD2 CmGTKL(0; R).Hai dây AB, CD ≠ 2ROH AB; OK CD.OH2 + HB2 = OK2 + KD2Bài toán : Cho AB và CD là hai dây (khác đường kính) của( O; R). Gọi OH, OK theo thứ tự là các khoảng cách từ O đến AB, CD. Chứng minh : OH2 + HB2 = OK2 + KD2ODCKHBAR => OH2 + HB2 = OK2 + KD2 Tiết 241. Bài toỏnOH2 + HB2 = OK2 + KD2 ODCKHBARAB*Trường hợp có một dây là đường kínhChẳng hạn AB là đường kính-Khi đó ta có: OH = 0; HB = R Mà OK2 + KD2 = R2 =>OH2 + HB2 = OK2 + KD2 Suy ra:OH2 + HB2 = R2LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 241. Bài toỏnOH2 + HB2 = OK2 + KD2 *Trường hợp cả 2 dây AB, CD đều là đ.kínhODCKHBAR19ABCDH K-Khi đó ta có:H và K đều trùng với O; OH = OK = 0; HB = KD = R=> OH2 + HB2 = OK2 + KD2* Chú ý: Kết luận của bài toán trên vẫn đúng nếu một dây là đường kính hoặc hai dây là đường kính. Chú ý:(SGK)LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 24OH2 + HB2 = OK2 + KD2 19a)Nếu AB =CD thỡ OH =OKDoMà OH2 +HB2 =OK2 +KD2 à=>OH2 = OK2 => OH =OK2. Liờn hệ giữa dõy và khoảng cỏch từ tõm tới dõyTa thấy giữa 2 dây và khoảng cách từ tâm tới 2 dây có liờn hệ gì ?AB = CD => OH = OK Trong (O;R): Đ.lý1:b)Nếu OH = OK thỡ AB = CD OH = OK => AB = CDAB = CD OH = OKLIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 24192. Liờn hệ giữa dõy và khoảng cỏch từ tõm tới dõy Trong (O;R): Đ.lý1:AB = CD OH = OKMuốn biết hai dõy cung cú bằng nhau khụng thỡ ta làm thế nào? Biết khoảng cỏch từ tõm tới hai dõy bằng nhau ta suy ra được điều gỡ?O .KCDABhLIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 2419 Chọn đáp án đúng.Cõu 1: Trong hình, cho OH = OK, AB = 6cmCD bằng:A: 3cmB: 6cmC: 9cmD: 12cmCõu 2: Trong hình, cho AB = CD, OH = 5cmOK bằng:A: 3cmB: 4cmC: 5cmD: 6cm Các khẳng địnhĐáp án A/ Trong một đường tròn hai dây cách đều tâm thì bằng nhau B/ Trong hai dây của một đường tròn dây nào nhỏ hơn thì dây đó gần tâm hơn C/ Hai dây bằng nhau khi và chỉ khi khoảng cách từ tâm đến mỗi dây của chúng bằng nhau D/ Trong các dây của một đường tròn dây nào gần tâm hơn thì lớn hơn Cõu 3: Chọn đáp án đúng,sai.Bài tập thảo luận nhúm LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 2419 Chọn đáp án đúng.Cõu 1: Trong hình, cho OH = OK, AB = 6cmCD bằng:A: 3cmB: 6cmC: 9cmD: 12cmCõu 2: Trong hình, cho AB = CD, OH = 5cmOK bằng:A: 3cmB: 4cmC: 5cmD: 6cmBài tập thảo luận nhúm Các khẳng địnhĐáp án A/ Trong một đường tròn hai dây cách đều tâm thì bằng nhau B/ Trong hai dây của một đường tròn dây nào nhỏ hơn thì dây đó gần tâm hơn C/ Hai dây bằng nhau khi và chỉ khi khoảng cách từ tâm đến mỗi dây của chúng bằng nhau D/ Trong các dây của một đường tròn dây nào gần tâm hơn thì lớn hơn Cõu 3: Chọn đáp án đúng,sai.ĐúngSaiĐúngSaiLIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂM Các khẳng địnhĐáp án A/ Trong một đường tròn hai dây cách đều tâm thì bằng nhau B/ Trong hai dây của một đường tròn dây nào nhỏ hơn thì dây đó gần tâm hơn C/ Hai dây bằng nhau khi và chỉ khi khoảng cách từ tâm đến mỗi dây của chúng bằng nhau D/ Trong các dây của một đường tròn dây nào gần tâm hơn thì lớn hơnĐúngSaiĐúngSai Trong các câu sau câu nào đúng , sai ?OABHCDKOTiết 24192. Liờn hệ giữa dõy và khoảng cỏch từ tõm tới dõy Trong (O;R): Đ.lý1:AB = CD OH = OK Hãy sử dụng kết quả của bài toán ở mục 1 để so sánh các độ dài:a) OH và OK, nếu biết AB > CD .b) AB và CD, nếu biết OH CD OH CD thì HB > KD => HB2 > KD2 mà OH2 + HB2 = KD2 + OK2 Suy ra OH2 OH = OK Trong (O;R): Đ.lý2:AB > CD OH , = thích hợp vào()? OH = OK Trong (O;R): Đ.lý2:AB > CD OH O là tâm đường tròn ngoại tiếp ABCOE = OF => BC = AC( đlí 1 )OD > OE, OE = OF nên OD > OF=> AB OE, OE = OF. Hãy so sánh:a) BC và AC;b) AB và AC;LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 24192. Liờn hệ giữa dõy và khoảng cỏch từ tõm tới dõy Trong (O;R): Đ.lý1:AB = CD OH = OK Trong (O;R): Đ.lý2:AB > CD OH O là tâm đường tròn ngoại tiếp ABCOE = OF => BC = AC( đlí 1 )OD > OE, OE = OF nên OD > OF=> AB OE, OE = OF. Hãy so sánh:a) BC và AC;b) AB và AC;?3LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 24193. Bài tập: GTKLBài 12 (SGK)Cho (O; 5cm), AB = 8cm. I AB, AI = 1cm I CD, CD AB a, Tính khoảng cách từ O đến AB b, CD = ABBài 12 (SGK)o5BACDIHKGiải:a) Kẻ tại H, ta cú:Xộtvuụng tại H cú:b) Kẻtại K, xột tứ giỏcOHIKcú:K = I = H = 90O => OHIK là HCN OK = HI = AH – AI = 4 – 1 = 3 (cm)=> OH = OK => AB = CD^^^LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂMTiết 24193. Bài tập: Bài 12 (SGK)1. Bài toỏn2. Liờn hệ giữa dõy và khoảng cỏch từ tõm tới dõy Trong (O;R): Đ.lý1:AB = CD OH = OK Trong (O;R): Đ.lý2:AB > CD OH OH = OK Trong (O;R): Đ.lý2:AB > CD OH OH = OK Trong (O;R): Đ.lý2:AB > CD OH < OKOH2 + HB2 = OK2 + KD2 Về nhàHọc thuộc và chứng minh lại hai định lí.Làm bài tập: 13;14; (SGK / T 106).LIấN HỆ GiỮA DÂY VÀ KHOẢNG CÁCH ĐẾN TÂM

File đính kèm:

  • ppttiet 23 hinh hoc 9 lien he giua day va KC den tam.ppt