- Phát biểu định lí về dấu hiệu nhận biết tiếp tuyến của đường tròn.
Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn
Bài tập:
Cho hình vẽ trong đó AB, AC theo thứ tự là các tiếp tuyến tại B, tại C của đường tròn (O). Hãy kể tên một vài đoạn thẳng bằng nhau, một vài góc bằng nhau.
Lời giải:
Xét ABO và ACO có :
B ̂=C ̂= 〖90〗^0 (tính chất tiếp tuyến)
OB = OC (cùng là bán kính (O)
AO chung
ABO = ACO (cạnh huyền - cạnh góc vuông)
AB = AC ; (𝐵𝐴𝑂) ̂= (𝐶𝐴𝑂) ̂ ; (𝐵𝑂𝐴) ̂= (𝐶𝑂𝐴) ̂
13 trang |
Chia sẻ: quynhsim | Lượt xem: 559 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng lớp 9 môn Hình học - Tiết 28 - Bài 6: Tính chất của hai tiếp tuyến cắt nhau (Tiếp theo), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO BA VÌTRƯỜNG THCS BA TRẠICHÀO MỪNG CÁC THẦY CÔ VỀ DỰ VỚI LỚP HỌCtiÕt 28 - Bµi 6. tÝnh chÊt cña hai tiÕp tuyÕn c¾t nhauGi¸o viªn : §inh Tiªn Hoµng- Phát biểu định lí về dấu hiệu nhận biết tiếp tuyến của đường tròn.Bài tập: Cho hình vẽ trong đó AB, AC theo thứ tự là các tiếp tuyến tại B, tại C của đường tròn (O). Hãy kể tên một vài đoạn thẳng bằng nhau, một vài góc bằng nhau.KIỂM TRA BÀI CŨ: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì :Điểm đó cách đều hai tiếp điểm.Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.1. Định lí về hai tiếp tuyến cắt nhauĐịnh lí:Tiết 28 - Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAUThước phân giácACBD?2 Hãy nêu cách tìm tâm của một miếng gỗ hình tròn bằng “thước phân giác” Trả lời : Đặt miếng gỗ hình tròn tiếp xúc với hai cạnh của thước.Kẻ theo “tia phân giác của thước, ta vẽ được một đường kính của hình tròn”Xoay miếng gỗ rồi làm tiếp tục như trên, ta vẽ được đường kính thư hai.Giao điểm của hai đường kính là tâm của miếng gỗ hình trònADBCTâm miếng gỗ hình tròn ?3 Cho tam giác ABC. Gọi I là giao điểm của các đường phân giác các góc trong của tam giác ; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ I đến các cạnh BC, AC, AB (h 80). Chứng minh rằng ba điểm D, E, F nằm trên cùng một đường trònĐường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn.2. Đường tròn nội tiếp tam giácTâm đường tròn nội tiếp tam giác là giao điểm của các đường phân giác các góc trong của tam giác.Chứng minh :Vì I thuộc tia phân giác góc A nên IE = IFVì I thuộc tia phân giác góc B nên IF = IDVậy IE = IF = ID D, E, F cùng nằm trên một đường tròn (I ; ID)1. Định lí về hai tiếp tuyến cắt nhauTiết 28 - Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU ?4 Cho tam giác ABC, K là giao điểm các đường phân giác của hai góc ngoài tại B và C; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ K đến các đường thẳng BC, AC, AB (h 81). Chứng minh rằng ba điểm D, E, F nằm cùng trên một đường tròn có tâm K.3. Đường tròn bàng tiếp tam giácĐường tròn tiếp xúc với một cạnh của một tam giác và tiếp xúc với các phần kéo dài của hai cạnh kia gọi là đường tròn bàng tiếp tam giác.Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C ; hoặc là giao điểm của đường phân giác góc A và đường phân giác góc ngoài tại B (hoặc C). Với một tam giác có ba đường tròn bàng tiếp.Chứng minh :Vì I thuộc tia phân giác góc CBx nên KF = KDVì I thuộc tia phân giác góc BCy nên KD = KEVậy KE = KF = KD D, E, F cùng nằm trên một đường tròn (I ; KD)2. Đường tròn nội tiếp tam giác1. Định lí về hai tiếp tuyến cắt nhauTiết 28 - Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAUFEDCBAK K1HK2Mxy1. Đường tròn nội tiếp tam giáca. là đường tròn đi qua ba đỉnh của tam giác.2. Đường tròn bàng tiếp tam giác.b. là đường tròn tiếp xúc với ba cạnh của tam giác.3. Đường tròn ngoại tiếp tam giác.c. là giao điểm ba đường phân giác trong của tam giác.4. Tâm của đường tròn nội tiếp tam giác.d. là đường tiếp xúc với một cạnh của tam giác và phần kép dài của hai cạnh kia.5. Tâm của đường tròn bàng tiếp tam giáce. là giao điểm của hai đường phân giác ngoài của tam giác. 1. Đường tròn nội tiếp tam giáca. là đường tròn đi qua ba đỉnh của tam giác.1 - b2. Đường tròn bàng tiếp tam giác.b. là đường tròn tiếp xúc với ba cạnh của tam giác.2 - d3. Đường tròn ngoại tiếp tam giác.c. là giao điểm ba đường phân giác trong của tam giác.3 - a4. Tâm của đường tròn nội tiếp tam giác.d. là đường tiếp xúc với một cạnh của tam giác và phần kép dài của hai cạnh kia.4 - c5. Tâm của đường tròn bàng tiếp tam giáce. là giao điểm của hai đường phân giác ngoài của tam giác.5 - eBài tập : Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúngHOẠT ĐỘNG NHÓMBài tập 26 a : (tr 115 SGK) Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). a) Chứng minh rằng OA vuông góc với BC.Chứng minh :Có AB = AC (tính chất tiếp tuyến) ABC cân tại A.Mà AO là đường phân giác của góc BAC nên cũng là đường trung trực của BC nênAO BC1. Định lí về hai tiếp tuyến cắt nhauTiết 28 - Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAUNếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì :Điểm đó cách đều hai tiếp điểm.Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn.Tâm đường tròn nội tiếp tam giác là giao điểm của các đường phân giác các góc trong của tam giác.Đường tròn tiếp xúc với một cạnh của một tam giác và tiếp xúc với các phần kéo dài của hai cạnh kia gọi là đường tròn bàng tiếp tam giác.Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C ; hoặc là giao điểm của đường phân giác góc A và đường phân giác góc ngoài tại B (hoặc C). Với một tam giác có ba đường tròn bàng tiếp.3. Đường tròn bàng tiếp tam giác2. Đường tròn nội tiếp tam giácHọc thuộc định lí về tính chất của hai tiếp tuyến cắt nhauHƯỚNG DẪN VỀ NHÀNắm vững các khái niệm về đường tròn nội tiếp tam giác; tam giác ngoại tiếp đường tròn; đường tròn bàng tiếp tam giác.Bài tập : 26 (b,c), 27, 28 tr 115, 116 SGKHướng dẫn bài tập 26 b, cc) Tính độ dài các cạnh của tam giác ABC ; biết OB = 2cm, OA = 4cm.b) Vẽ đường kính CD. Chứng minh rằng BD song song với AOKÍNH CHÚC CÁC THẦY CÔ GIÁO SỨC KHOẺ, HẠNH PHÚCCHÚC CÁC EM HỌC SINH CHĂM NGOAN, HỌC GIỎI
File đính kèm:
- Tiet 28 Tinh chat cua hai tiep tuyen cat nhau.pptx