Bài giảng lớp 11 môn Hình học: Hai đường thẳng song song, hai đường thẳng chéo nhau

Học xong bài này, người học có khả năng:

•Nắm được vị trí tương đối của hai đường thẳng, khái niệm hai đường thẳng chéo nhau.

•Tìm giao tuyến của hai mặt phẳng cách thứ 2

•Nắm và áp dụng được định lý về ba mặt phẳng cắt nhau theo 3 giao tuyến.

 

ppt24 trang | Chia sẻ: quynhsim | Lượt xem: 792 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng lớp 11 môn Hình học: Hai đường thẳng song song, hai đường thẳng chéo nhau, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
HAI ĐƯỜNG THẲNG SONG SONG, HAI ĐƯỜNG THẲNG CHÉO NHAUChương II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN – QUAN HỆ SONG SONG(Sách giáo khoa Hình học 11 ban cơ bản) Vị trí bài học: Bài 2 2/4/20171Khoa Khoa Họ Cơ bảnMỤC TIÊU BÀI HỌCNắm được vị trí tương đối của hai đường thẳng, khái niệm hai đường thẳng chéo nhau.Tìm giao tuyến của hai mặt phẳng cách thứ 2Nắm và áp dụng được định lý về ba mặt phẳng cắt nhau theo 3 giao tuyến.Học xong bài này, người học có khả năng: 2/4/20172Khoa Khoa Họ Cơ bảnDẫn nhậpDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tập Trong mặt phẳng cho hai đường thẳng a và b. Xét vị trí tương đối của chúng?Trả lời1/ a và b cắt nhau.2/ a và b song song với nhau3/ a và b trùng nhauNếu a và b nằm trong không gian thì có những khả năng nào xảy ra?Ngày 2/4/20173Khoa Khoa Họ Cơ bảnVị trí tương đối của hai đường thẳng trong không gianDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tập Trường hợp 1: a và b cùng thuộc một mặt phẳng (hai đường thẳng đồng phẳng)Như vậy: hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.Ngày 2/4/20174Khoa Khoa Họ Cơ bảnVị trí tương đối của hai đường thẳng trong không gianDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tậpTrường hợp 2: a và b không cùng nằm trong một mặt phẳng (hai đường thẳng chéo nhau)aabI .Như vậy: hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳngNgày 2/4/20175Khoa Khoa Họ Cơ bảnMột số hình ảnh về vị trí tương đối của hai đường thẳngDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tậpababPababNgày 2/4/20176Khoa Khoa Họ Cơ bảnMột số hình ảnh về vị trí tương đối của hai đường thẳngDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tậpNgày 2/4/20177Khoa Khoa Họ Cơ bảnVí dụDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tậpBACDA’D’C’B’Cho hình hộp ABCD.A’B’C’D’.Xác định vị trí tương đối của hai đường thẳng : a) A’D’ và DD’ A’D’ và DD’ cắt nhau b) AB và CD AB và CD song song nhau c) AA’ và CD AA’ và CD chéo nhau d) BD’ và CD BD’ và CD chéo nhauNgày 2/4/20178Khoa Khoa Họ Cơ bảnVí dụDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốHướng dẫn bài tậpabcd Cho tứ diện ABCD, chứng minh hai đường thẳng AB và CD chéo nhau ?Lêi gi¶iNgày 2/4/20179Khoa Khoa Họ Cơ bảnĐịnh lý 1Dẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtĐịnh lý 1Định lý 2Hệ quảVí dụĐịnh lý 3Ví dụCủng cốBài tậpĐịnh lí 1: Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho.da. MNhận xét : Hai đường thẳng song song xác định duy nhất một mặt phẳng.Ngày 2/4/201710Khoa Khoa Họ Cơ bảnHai ®­êng th¼ng chÐo nhauVµ hai ®­êng th¼ng song songI- Vị trí tương đối của hai đường thẳng trong không gianII - Tính chấtĐịnh lý 1 (GK)IabccbaGi¶iKhi a  b = I ta có: I  a , a  ()  I  () I  b , b  ()  I  () Vậy I là điểm chung của () và () Định lý 2 Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau. Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc , hoặc với nhau.đồng quyđôi một song song. . .. . .Giả sử a và b không cắt nhau, Hãy cho biết mối quan hệ giữa ba giao tuyến a, b và c?3 Cho hai mp () và () . Một mp() cắt () và () lần lượt theo các giao tuyến a và b. CMR khi a và b cắt nhau tại I thì I là điểm chung của () và () Ngày 2/4/201711Khoa Khoa Họ Cơ bảnbcabacHaõy quan saùt Nếu hai mp phân biệt, lần lượt chứa hai đ.thẳng song song thì giao tuyến của chúng (nếu có) cũng với hai đ.thẳng đó, với một trong hai đ.thẳng đó.song song hoặc trùngNgày 2/4/201712Khoa Khoa Họ Cơ bảnHai ®­êng th¼ng chÐo nhauVµ hai ®­êng th¼ng song songI- Vị trí tương đối của hai đường thẳng trong không gianII - Tính chấtĐịnh lý 1 (SGK)Định lý 2 (SGK)dd1d2dd1d2dd1d2 Nếu hai mp phân biệt, lần lượt chứa hai đ.thẳng song song thì giao tuyến của chúng (nếu có) cũng với hai đ.thẳng đó, với một trong hai đ.thẳng đó.song song . . .Hệ quả:hoặc trùng. . .Ngày 2/4/201713Khoa Khoa Họ Cơ bảnHai ®­êng th¼ng chÐo nhauVµ hai ®­êng th¼ng song songI- Vị trí tương đối của hai đường thẳng trong không gianII - Tính chấtMuèn t×m giao tuyÕn cña 2 mp ph©n biÖt biÕt 2 mp ®ã cã 1 ®iÓm chung vµ lÇn l­ît chøa hai ®­êng th¼ng song song víi nhau, ta lµm thÕ nµo?Để xác định giao tuyến của hai mp phân biệt có chứa hai đường thẳng song song với nhau, ta cần biết một điểm chung của hai mp đó và phương của giao tuyến (song song với hai đường thẳng đó)Nhận xét:Ngày 2/4/201714Khoa Khoa Họ Cơ bảnVí dụVD1: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD.Xác định giao tuyến của các mặt phẳng (SAD) và (SBC)Dẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtĐịnh lý 1Định lý 2Hệ quảVí dụĐịnh lý 3Ví dụCủng cốBài tậpSABCDGiảiS là điểm chung của (SAD) và (SBC). Mà: Nên giao tuyến của (SAD) và (SBC) là đường thẳng d qua S và song song với AD, BC.dĐiểm chung của (SAD) và (SBC) ?Hai mặt phẳng (SAD) và (SBC) chứa hai đường thẳng nào song song với nhau ?Ngày 2/4/201715Khoa Khoa Họ Cơ bảnĐịnh lý 3Dẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtĐịnh lý 1Định lý 2Hệ quảVí dụĐịnh lý 3Ví dụCủng cốBài tậpĐịnh lý 3: Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhauabcNgày 2/4/201716Khoa Khoa Họ Cơ bảnVí dụVí dụ 3: Cho tứ diện ABCD. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các đoạn thẳng AC, BD, AB, CD, AD và BC. Chứng minh các đoạn thẳng MN, PQ, RS đồng quy tại trung điểm của mỗi đoạnTa có PR là đường trung bình của tam giác ABCVà SQ là đường trung bình của tam giác ACDNên:vàsuy ra: Nên tứ giác PSQR là hình bình hành. Vậy PQ cắt RS tại trung điểm G của mỗi đoạnGiảiG là trung điểm chung của PQ và MN chứng minh tương tựNgày 2/4/201717Khoa Khoa Họ Cơ bảnCỦNG CỐa, b chéo nhaua // babPPbaMô tảKhác nhauGiống nhauKhông đồng phẳngĐồng phẳngKhông có điểm chung2/4/201718Khoa Khoa Họ Cơ bảnVị trí tương đối giữa hai đường thẳng trong không gian:PbaĐồng phẳngKhông đồng phẳngHai đường thẳng chéo nhauHai đường thẳng cắt nhauHai đường thẳng song songHai đường thẳng trùng nhauPbaPbaPbaIa chéo b2/4/201719Khoa Khoa Họ Cơ bảnDẫn nhậpVị trí tương đối của hai đường thẳng trong không gianTính chấtCủng cốBài tậpBài tập1/59 Cho Tứ diện ABCD. Gọi P, Q, R, S là bốn điểm lần lượt nằm trên bốn cạnh AB, BC, CD, DA. CMR nếu P, Q, R, S đồng phẳng thì ba đường thẳng PQ, RS, AC hoặc song song hoặc đồng quy.Ngày 2/4/201720Khoa Khoa Họ Cơ bảnNgày 2/4/201721Khoa Khoa Họ Cơ bảnNgày 2/4/201722Khoa Khoa Họ Cơ bảnBài tập 2/59 Cho Tứ diện ABCD và ba điểm P, Q, R lần lượt nằm trên ba cạnh AB, CD, BC. Tìm giao điểm S của mp(PQR) trong trường hợp:PR song song với ACPR cắt ACNgày 2/4/201723Khoa Khoa Họ Cơ bảnBài tập 3/59 Cho Tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm đoạn MN.Tìm giao điểm của đường thẳng AG với mp(BCD)Qua M kẻ Mx song song với AA’ và Mx cắt (BCD) tại M’. CMR: B, M, A thẳng hàng và BM’ = M’A’ = A’NCMR: GA = 3GA’Ngày 2/4/201724Khoa Khoa Họ Cơ bản

File đính kèm:

  • pptTien2 bai 2 chuong2 hai duong thang cheo nhau hai duong thang songsong.ppt