Ôn tập thi học kỳ 1. năm học 2011 – 2012 môn toán 9

Bài 2: Xác định hàm số y = ax + b

a) Biết đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng -3 và đi qua điểm A( 2; -2).

b) Vẽ đồ thị của hàm số vừa tìm được ở câu a.

Bài 3: Xác định hàm số y = ax + b

a) Biết đồ thị của hàm số song song với đường thẳng y = -2x + 3 và đi qua điểm B( 3; 1).

b) Vẽ đồ thị của hàm số vừa tìm được ở câu a.

 

doc4 trang | Chia sẻ: quynhsim | Lượt xem: 804 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Ôn tập thi học kỳ 1. năm học 2011 – 2012 môn toán 9, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ÔN TẬP THI HỌC KỲ 1. NĂM HỌC 2011 – 2012 MÔN TOÁN 9 Câu I: Căn thức: (3 điểm) Bài 1: Thực hiện phép tính a) b) c) d) e) f) g) h) k) l) m) Bài 2: Rút gọn biểu thức sau: với a 0 Bài 3: Cho biểu thức A = với x > 0 và x 4 a) Rút gọn A b) Tìm x để A = -3 Bài 4: Rút gọn biểu thức sau: A= với và Bài 5: Cho biểu thức B = a. Rút gọn B b. Chứng minh B ³ 0 c. So sánh B với Bài 6: Cho biểu thức C = a. Rút gọn C b. Tìm giá trị của a để B > 0 c. Tìm giá trị của a để B = -1 Bài 7: Cho biểu thức : Tìm điều kiện xác định của P. Rút gọn P. Tìm x để P = 2. Bài 8: Giải phương trình : a. b. c. d. Câu II: Hàm số y= ax+b: (2 điểm) Bài 1: Vẽ đồ thị các hàm số và tính góc tạo bởi mỗi đồ thị của hàm số và trục Ox (làm tròn đến phút) a) b) c) d) Bài 2: Xác định hàm số y = ax + b a) Biết đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng -3 và đi qua điểm A( 2; -2). b) Vẽ đồ thị của hàm số vừa tìm được ở câu a. Bài 3: Xác định hàm số y = ax + b a) Biết đồ thị của hàm số song song với đường thẳng y = -2x + 3 và đi qua điểm B( 3; 1). b) Vẽ đồ thị của hàm số vừa tìm được ở câu a. Bài 4: a) Vẽ trên cùng mặt phẳng tọa độ đồ thị của các hàm số sau: y = x + 2 và y = -2x + 5 b) Tìm tọa độ giao điểm A của hai đồ thị nói trên. Bài 5: Tìm giá trị m để hai đường thẳng song song với nhau: y = (m – 1).x + 2 (với m 1) và y = (3 – m).x + 1 (với m -3) Bài 6: Tìm các giá trị của a để hai đường thẳng y = (a – 1)x + 2 (a 1) và y = (3 – a)x + 1 (a 3) cắt nhau. Bài 7: Cho hàm số y = (m – 3)x +1 a. Với giá trị nào của m thì hàm số đồng biến ? Nghịch biến ? b. Xác định giá trị của m để đồ thị của hàm số đi qua điểm A(1 ; 2). c. Xác định giá trị của m để đồ thị của hàm số đi qua điểm B(1 ; –2). d. Vẽ đồ thị của hàm số ứng với giá trị của m tìm được ở các câu b và c. Bài 8: Viết phương trình đường thẳng thoả mãn một trong các điều kiện sau : a) Cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ bằng b) Song song với đường thẳng y = 3x + 1 và đi qua điểm M (4; - 5) Bài 9: Vẽ đồ thị của các hàm số y = x và y = 2x + 2 trên cùng một mặt phẳng tọa độ. a. Gọi A là giao điểm của hai đồ thị của hàm số nói trên, tìm tọa độ của điểm A. b. Vẽ qua điểm B(0 ; 2) một đường thẳng song song với Ox, cắt đường thẳng y = x tại C. Tìm tọa độ của điểm C rồi tính diện tích DABC (đơn vị các trục là xentimét) Bài 10: a. Biết rằng với x = 4 thì hàm số y = 3x + b có giá trị là 11. Tìm b. Vẽ đồ thị của hàm số với giá trị của b vừa tìm được. b. Biết rằng đồ thị của hàm số của hàm số y = ax + 5 đi qua điểmA(–1 ; 3). Tìm a. Vẽ đồ thị của hàm số với giá trị của a vừa tìm được. Bài 11: Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm giá trị của m và k để đồ thị của các hàm số là: a. Hai đường thẳng song song với nhau. b. Hai đường thẳng cắt nhau. c. Hai đường thẳng trùng nhau. Câu III: Hệ thức lượng trong tam giác vuông: (3 điểm) Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. Biết AH=12cm, BH=9cm. Tính CH; AB; AC; góc B và góc C? (Số đo góc làm tròn đến phút) Bài 2: Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. a) Chứng minh tam giác ABC vuông tại A. b) Tính góc B, góc C và đường cao AH của tam giác ABC. c) Tính bán kính r của đường tròn (O) nội tiếp tam giác ABC. Bài 3: cho DABC có Â = 900 đường cao AH .Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH= 4cm, HC=9 cm. a) Tính độ dài DE b) Chứng minh : AD.AB = AE.AC c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH, N là trung điểm của CH. d) Tính diện tích tứ giác DENM Bài 4: Cho DABC có = 90 0 , kẻ đường cao AH và trung tuyến AM kẻ HD^AB , HE ^ AC biết HB = 4,5cm; HC=8cm. a)Chứng minh BH = MC b)Chứng minh AM ^ DE tại K c)Tính độ dài AK Bài 5:Cho hình thang vuông ABCD vuông ở A và D. Có đáy AB=7cm, CD= 4cm, AD= 4cm. a) Tính cạnh bên BC b) Trên AD lấy E sao cho CE = BC.Chứng minh EC^BC và tính diện tích tứ giác ABCE c) Hai đường thẳng AD và BC cắt nhau Tại S tính SC d) Tính các góc B và C của hình thang Bài 6:Cho tam giác ABC vuông ở A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. Chứng minh AD. AB = AE. AC Gọi M, N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M; MD) và (N; NE) Gọi P là trung điểm MN, Q là giao điểm của DE và AH . Giả sử AB = 6 cm, AC = 8 cm . Tính độ dài PQ. Câu IV : Đường tròn: (2 điểm) Bài 1: Cho đường tròn tâm O đường kính AB và một điểm C trên đường tròn. Từ O kẻ một đường thẳng song song với dây AC, đường thẳng này cắt tiếp tuyến tại B của đường tròn ở điểm D. a) Chứng minh OD là phân giác góc BOC. b) Chứng minh CD là tiếp tuyến của đường tròn. Bài 2: Cho đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax và By. Qua một điểm E thuộc nửa đường tròn vẽ tiếp tuyến thứ ba cắt Ax và By lần lượt ở C và D. Chứng minh rằng: a) CD = AC + BD b) Tam giác COD là tam giác vuông. Bài 3: Cho đường tròn (O; R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đường kính AB qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. Chứng minh rằng: a) Góc BCA = 900. b) CH . HD = HB . HA c) Biết OH = . Tính diện tích ACD theo R. Bài 4: Cho nửa đường tròn tâm O, đường kính AB. Kẻ tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Vẽ bán kính OE bất kỳ. Tiếp tuyến nửa đường tròn tại E cắt Ax, By theo thứ tự tại C và D. a) Chứng minh rằng CD = AC + BD b) Tính số đo góc DOC c) Gọi I là giao điểm của OC và AE; K là giao điểm của OD và BE. Tứ giác EIOK là hình gì? Vì sao? d) Xác định vị trí của OE để tứ giác EIOK là hình vuông. Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD; CE với đường tròn (D; E là các tiếp điểm khác H). Chứng minh rằng: a) BD + CE = BC. b) Ba điểm D, A, E thẳng hàng. c) DE là tiếp tuyến của đường tròn có đường kính BC. Bài 6: Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). a) Chứng minh BC vuông góc với OA. b) Kẻ đường kính BD, chứng minh OA // CD. Bài 7: Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A ( R R’). Vẽ tiếp tuyến chung qua A. Vẽ tiếp tuyến thứ hai tới hai đường tròn (O) và (O’). Gọi B và C lần lượt là hai tiếp điểm của (O) và (O’). M là giao điểm của hai tiếp tuyến trên. a) Tứ giác OO’CB là hình gì? Giải thích? b) Chứng minh rằng AM = BC Bài 8: Cho D MAB vẽ đường tròn tâm O đường kính AB cắt MA ở C cắt MB ở D . Kẻ AP ^ CD; BQ ^ CD. Gọi H là giao điểm AD và BC chứng minh CP = DQ PD.DQ = PA.BQ và QC.CP = PD.QD MH^AB Bài 9: Cho nửa đường tròn tâm (O) đường kính AB ,tiếp tuyến Bx. Qua C trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx ở M . tia Ac cắt Bx ở N. Chứng minh : OM^BC Chứng minh M là trung điểm BN Kẻ CH^ AB , AM cắt CH ở I. Chứng minh I là trung điểm CH Bài 10: Cho đường tròn(O;5cm) đường kính AB gọi E là một điểm trên AB sao cho BE = 2 cm . Qua trung điểm H của đoạn AE vẽ dây cung CD ^ AB Tứ giác ACED là hình gì ? Vì sao? b) Gọi I là giao điểm của DEvới BC. C/m/r : I thuộc đường tròn(O’)đường kính EB c) Chứng minh HI là tiếp điểm của đường tròn (O’) d) Tính độ dài đoạn HI Bài 11: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài ở A . Tiếp tuyến chung ngoài của hai đường tròn , tiếp xúc với đường tròn (O) ở M ,tiếp xúc với đường tròn(O’) ở N . Qua A kẻ đường vuông góc với OO’ cắt MN ở I. a) Chứng minh D AMN vuông b) DIOO’là tam giác gì ? Vì sao c)Chứng minh rằng đường thẳng MN tiếp xúc với với đường tròn đường kính OO’ d) Cho biết OA= 8 cm , OA’= 4,5 cm .Tính độ dài MN Bài 12: Cho (O), đường kính AB = 2R và hai tia tiếp tuyến Ax, By. Lấy điểm C tuỳ ý trên cung AB. Từ C kẻ tiếp tuyến thứ ba cắt Ax, By tại D và E. Chứng minh : DE = AD + BE. Chứng minh : OD là trung trực của đoạn thẳng AC và OD // BC. Gọi I là trung điểm của đoạn thẳng DE, vẽ đường tròn tâm I bán kính ID. Chứng minh: (I ; ID) tiếp xúc với đường thẳng AB. Gọi K là giao điểm của AE và BD. Chứng minh: CK vuông góc AB tại H và K là trung điểm của đoạn CH. Bài 13: Cho đường tròn (O), đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA. a) Tứ giác ACOD là hình gì ? Tại sao ? b) Chứng minh tam giác BCD đều. c) Tính chu vi và diện tích tam giác BCD theo R. Baøi 14: Cho tam giaùc ABC vuoâng taïi A coù ñöôøng cao AH. Bieát AB = 9cm, BC = 15cm Tính ñoä daøi caùc caïnh AC, AH, BH, HC. Veõ ñöôøng troøn taâm B, baùn kính BA. Tia AH caét (B) taïi D. Chöùng minh: CD laø tieáp tuyeán cuûa (B;BA). Veõ ñöôøng kính DE. Chöùng minh: EA song song vôùi BC. Qua E veõ tieáp tuyeán d vôùi (B). Tia CA caét d taïi F, EA caét BF taïi G. Chöùng minh: CF = CD + EF vaø töù giaùc AHBG laø hình chöõ nhaät.

File đính kèm:

  • docDE CUONG ON TAP HKI TOAN 9.doc