Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm)
Cho hàm số : (1) ( là tham số).
2 3 2 2 3
) 1 ( 3 3 m m x m mx x y - + - + + - = m
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi . 1 = m
2. Tìm kđể ph-ơng trình: - có ba nghiệm phân biệt. 0 3 3
2 3 2 3
= - + + k k x x
3. Viết ph-ơng trình đ-ờng thẳng đi qua hai điểm cực trị của đồ thị hàm số (1).
Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm)
Cho ph-ơng trình : 0 1 2 1 log log
2
3
2
3 = - - + + m x x (2) ( là tham số). m
1 Giải ph-ơng trình (2) khi . 2 = m
2. Tìm để ph-ơng trình (2) có ít nhất một nghiệm thuộc đoạn [ m
3
3 ; 1 ].
Câu III. (ĐH : 2,0 điểm; CĐ : 2,0 điểm )
1 trang |
Chia sẻ: quynhsim | Lượt xem: 386 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 môn Toán - Đề 1, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002
------------------------------ Môn thi : toán
Đề chính thức (Thời gian làm bài: 180 phút)
_____________________________________________
Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm)
Cho hàm số : (1) ( là tham số). 23223 )1(33 mmxmmxxy −+−++−= m
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi .1=m
2. Tìm k để ph−ơng trình: − có ba nghiệm phân biệt. 033 2323 =−++ kkxx
3. Viết ph−ơng trình đ−ờng thẳng đi qua hai điểm cực trị của đồ thị hàm số (1).
Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm)
Cho ph−ơng trình : 0121loglog 23
2
3 =−−++ mxx (2) ( là tham số). m
1 Giải ph−ơng trình (2) khi .2=m
2. Tìm để ph−ơng trình (2) có ít nhất một nghiệm thuộc đoạn [m 33;1 ].
Câu III. (ĐH : 2,0 điểm; CĐ : 2,0 điểm )
1. Tìm nghiệm thuộc khoảng )2;0( π của ph−ơng trình: .32cos
2sin21
3sin3cossin +=
+
++ x
x
xxx5
2. Tính diện tích hình phẳng giới hạn bởi các đ−ờng: .3,|34| 2 +=+−= xyxxy
Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm)
1. Cho hình chóp tam giác đều đỉnh có độ dài cạnh đáy bằng a. Gọi ABCS. ,S M và lần l−ợt N
là các trung điểm của các cạnh và Tính theo diện tích tam giác , biết rằng SB .SC a AMN
mặt phẳng ( vuông góc với mặt phẳng . )AMN )(SBC
2. Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đ−ờng thẳng:
∆ và ∆ .
=+−+
=−+−
0422
042
:1 zyx
zyx
+=
+=
+=
tz
ty
tx
21
2
1
:2
a) Viết ph−ơng trình mặt phẳng chứa đ−ờng thẳng )(P 1∆ và song song với đ−ờng thẳng .2∆
b) Cho điểm . Tìm toạ độ điểm )4;1;2(M H thuộc đ−ờng thẳng 2∆ sao cho đoạn thẳng MH
có độ dài nhỏ nhất.
Câu V.( ĐH : 2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác vuông tại , ABC A
ph−ơng trình đ−ờng thẳng là BC ,033 =−− yx các đỉnh và A B thuộc trục hoành và
bán kính đ−ờng tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm của tam giác . G ABC
2. Cho khai triển nhị thức:
nx
n
n
nxx
n
n
xnx
n
nx
n
nxx
CCCC
+
++
+
=
+
−−−−
−
−−−−−−
3
1
32
1
13
1
2
1
12
1
032
1
22222222 L
( n là số nguyên d−ơng). Biết rằng trong khai triển đó C và số hạng thứ t− 13 5 nn C=
bằng , tìm và n20 n x .
----------------------------------------Hết---------------------------------------------
Ghi chú: 1) Thí sinh chỉ thi cao đẳng không làm Câu V.
2) Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:.................................................... Số báo danh:.....................
File đính kèm:
- DE DH KA 2002.pdf