Kì thi tuyển sinh lớp thpt năm học 2012 – 2013 môn thi: toán thời gian làm bài: 120 phút (không kể thời gian phát đề)

Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số)

 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m

 2/ Tìm m để đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình)

 

doc4 trang | Chia sẻ: quynhsim | Lượt xem: 846 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Kì thi tuyển sinh lớp thpt năm học 2012 – 2013 môn thi: toán thời gian làm bài: 120 phút (không kể thời gian phát đề), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 §Ò chÝnh thøc Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) Bài 1 (1 điểm): Cho biểu thức: A = 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1 Bài 2 (1,5 điểm): 1/ Vẽ đồ thị (P) hàm số y = 2/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm A Bài 3 (2 điểm): 1/ Giải hệ phương trình: 2/ Giải phương trình: x4 + x2 – 6 = 0 Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình) Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cát tuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đường tròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA HƯỚNG DẪN GIẢI: Nội dung Bài 1 (1 điểm): 1/ ĐKXĐ: x 0 A = = = = Vậy với x 0 thi A = 2/ Khi A = 1 ó = 1 ó = 2 ó 2x = 4 ó x = 2 (Thỏa điều kiện xác định) Vậy khi A = 1 giá trị của x = 2 Bài 2 (1,5 điểm): 1/ Vẽ đồ thị (P) hàm số y = -Bảng giá trị x -4 -2 0 2 4 y = 8 2 0 2 8 -Đồ thị (P) là đường parabol đỉnh O(0; 0) nằm phía trên trục hoành, nhận trục tung làm trục đối xứng và đi qua các điểm có tọa độ cho trong bảng trên. 2/ Cách 1. Vì (d) cắt (P) tại điểm A có hoành độ bằng 1 nên x = 1 thỏa mãn công thức hàm số (P) => Tung độ của điểm A là: yA = = A(1; ) (d) nên = 1 – m m = 1 – = Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = Cách 2 Ta có phương trình hoành độ giao điểm của (d) và (P) là: = x – m ó x2 – 2x + 2m = 0 (*) Để (d) cắt (P) tại điểm A có hoành độ bằng 1 thì phương trình (*) có nghiệm bằng 1 12 – 2.1 + 2m = 0 ó m = Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = = Bài 3 (2 điểm): 1/ Giải hệ phương trình ó ó ó Vậy hệ phương trình có nghiệm duy nhất (-1; -6) 2/ Giải phương trình x4 + x2 – 6 = 0 (1) Đặt x2 = t (t 0) Phương trình (1) trở thành: t2 + t – 6 = 0 (2) Ta có = 12 – 4.1.(-6) = 25 Phương trình (2) có hai nghiệm t1 = = 2 (nhận) ; t2 = = -3 (loại) Với t = t1 = 2 => x2 = 2 ó x = Vậy phương trình đã cho có hai nghiệm x1 = ; x2 = - Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Ta có ’ = (-m)2 – 1 (-2m – 5) = m2 + 2m + 5 = (m + 1)2 + 4 Vì (m + 1)2 0 với mọi m (m + 1)2 + 4 > 0 với mọi m Hay ’ > 0 với mọi m Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m 2/ Vì phương trình đã cho luôn có hai nghiệm phân biệt với mọi m (theo định lý Vi-et) Đặt A = A2 = ()2 = x12 – 2x1x2 + x22 = (x1 + x2)2 – 4x1x2 A2 = (2m)2 – 4(-2m – 5) = (2m)2 + 8m + 20 = (2m)2 + 2. 2m. 2 + 4 + 16 = (2m + 2)2 + 16 16 Giá trị nhỏ nhất của A2 = 16 Giá trị nhỏ nhất của A là 4 khi 2m + 2 = 0 ó m = -1 Vậy với m = -1 thì đạt giá trị nhỏ nhất là 4 Bài 5 (3,5 điểm): 1/ Ta có MB là tiếp tuyến của (O) (gt) OB MB OBM = 900 B thuộc đường tròn đường kính OM (1) Ta có IQ = IP (gt) OI QP (Tính chất liên hệ giữa đường kính và dây cung) OIM = 900 I thuộc đường tròn đường kính OM (2) Từ (1) và (2) => BOIM nội tiếp đường tròn đường kính OM 2/ Ta có BOM = AOM (Tính chất hai tiếp tuyến cắt nhau) BOM = BOA mà BOA = SđAB BOM = SđAB Ta lại có BEA = SđAB (Định lý góc nội tiếp) BOM = BEA 3/ Ta có: Tứ giác BOIM nội tiếp (Chứng minh trên) BOM = BIM (Cùng chắn BM) mà BOM = BEA (Chứng minh trên) BIM = BEA Mặt khắc BIM và BEA là hai góc ở vị trí đồng vị AE // PQ 4/ Ta có OI QP và AE // PQ (chứng minh trên); OI AE (3) mà KE = KA (gt) OK AE (tính chất liên hệ giữa đường kính và dây cung) (4) Từ (3) và (4), ta thấy qua điểm O có hai đường thẳng OI và OK cùng song song với AE OI và OK phải trùng nhau Ba điểm O, I, K thẳng hàng

File đính kèm:

  • docDE TOAN THI THU VAO 10 BINH DUONG.doc