I/ MỤC TIÊU:
1)Về kiến thức:
+ Học sinh nắm vững hệ tọa độ trong không gian, tọa độ của véc tơ , của điểm, phép toán về véc tơ.
+ Viết được phương trình mặt cầu, phương trình đường thẳng và vị trí tương đối của chúng.
+ Tính được các khoảng cách: giữa hai điểm, từ một điểm đến mặt phẳng.
2) Về kiến thức:
+ Rèn luyện kỹ năng làm toán trên véc tơ.
+ Luyện viết phương trình mặt cầu, phương trình mặt phẳng, phương trình đường thẳng.
+ Phối hợp các kiến thức cơ bản, các kỹ năng cơ bản để giải các bài toán mang tính tổng hợp bằng phương pháp tọa độ.
3) Về tư duy và thái độ:
+ Rèn luyện tính chính xác, tư duy lôgíc.
+ Rèn khả năng quan sát sự liên hệ giữa song song và vuông góc.
4 trang |
Chia sẻ: quynhsim | Lượt xem: 731 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Toán lớp 12 - Ôn tập chương III (chương trình chuẩn), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 04/8/08
Số tiết:2
ÔN TẬP CHƯƠNG III ( Chương trình chuẩn)
I/ MỤC TIÊU:
1)Về kiến thức:
+ Học sinh nắm vững hệ tọa độ trong không gian, tọa độ của véc tơ , của điểm, phép toán về véc tơ.
+ Viết được phương trình mặt cầu, phương trình đường thẳng và vị trí tương đối của chúng.
+ Tính được các khoảng cách: giữa hai điểm, từ một điểm đến mặt phẳng.
2) Về kiến thức:
+ Rèn luyện kỹ năng làm toán trên véc tơ.
+ Luyện viết phương trình mặt cầu, phương trình mặt phẳng, phương trình đường thẳng.
+ Phối hợp các kiến thức cơ bản, các kỹ năng cơ bản để giải các bài toán mang tính tổng hợp bằng phương pháp tọa độ.
3) Về tư duy và thái độ:
+ Rèn luyện tính chính xác, tư duy lôgíc.
+ Rèn khả năng quan sát sự liên hệ giữa song song và vuông góc.
II/ CHUẨN BỊ:
- Giáo viên: Giáo án, phiếu học tập, bảng phụ.
- Học sinh: giải bài tập ôn chương, các kiến thức cơ bản trong chương.
III/ PHƯƠNG PHÁP: Hỏi đáp , hoạt động nhóm.
IV/ TIẾN TRÌNH BÀI HỌC:
1/ Ổn định tổ chức:
2/ Kiểm tra bài cũ:
3/ Bài mới:
tiết 1
Hoạt động 1:
TG
Hoạt động của học sinh
Hoạt động của giáo viên
Nội dung ghi bảng
5’
5’
5’
-Treo bảng phụ 1
-Gọi 2 học sinh lên bảng giải bài tập 1a; 1b
-Nhẩm, nhận xét , đánh giá
-Hỏi để học sinh phát hiện ra cách 2: không
đồng phẳng
-Hỏi: Khoảng cách từ A đến(BCD) được tính như thế nào?
-Phát phiếu HT1
-Làm bài tập1
-Hai học sinh được lên bảng.
-Lớp theo dõi; nhận xét, nêu ý kiến khác.
-Trả lời câu hỏi và áp dụng vào bài tập 1c.
-Nhận phiếu HT1 và trả lời
BT1:
a/P/trình mp(BCD):
x-2y-2z+2 = 0 (1)
Tọa độ điểm A không thỏa mãn phương trình mp(1) nên A không thuộc mặt phẳng (BCD)
b/ Cos(AB,CD)=
Vậy (AB,CD)= 450
c/ d(A, (BCD)) = 1
Hoạt động 2:
TG
Hoạt động của học sinh
Hoạt động của giáo viên
Nội dung ghi bảng
10’
10’
10’
BT4:
- Hướng dẫn gợi ý học sinh làm .
Câu hỏi: Tìm véctơ chỉ phương của đường thẳng AB? ∆?
BT 6:
a/Gợi ý, hướng dẫn để học sinh tự tìm ra cách giải
bài 6a
b/ Hỏi quan hệ giữa và ?
BT2: Nêu phương trình mặt cầu?
-Tìm tâm và bán kính r của (S) ở bài tập 2a
-Gợi mở để h/s phát hiện ra hướng giải bài 2c
- Hai học sinh lên bảng giải bài tập 4a; 4b
- Theo dõi, nhận xét
- Từ hướng dẫn của giáo viên rút ra cách tìm giao điểm của đường và mặt.
Suy nghĩ, trả lời, suy ra hướng giải quyết bài tập 6b.
Trả lời câu hỏi của giáo viên, trình bày bài giải lên bảng.
Suy ra hướng giải bài 2c
BT4:
a/ = (2;-1;3); phương trình đường thẳng AB:
b/(∆) có vécctơ chỉ phương
và đi qua M nên p/trình tham số của ():
BT6: a/Toạ độ giao điểm của đường thẳng d và mplà nghiệm của hệ phương trình:
ĐS: M(0; 0; -2)
b/ Ta có vtpt của mplà:
.P/t mp:
4(x- 0)+ 3(y- 0)+ (z+ 2)= 0
4x + 3y + z +2 = 0.
BT2:a/ Tâm I(1, 1, 1)
Bán kính .
b/(S):(x-1)2+(y-1)2+(z-1)2=62
c/ Mptiếp xúcvới mặt cầu(S) tại A, Suy ra có vtpt là . vậy phương trình của mp là:
5(x-6) + 1(y-2) – 6(z+5)=0
Hay 5x + y – 6z – 62 = 0.
tiết 2
Hoạt động 3:
Bài toán vận dụng kiến thức tổng hợp
10’
10’
BT7: Gọi 2 h/sinh lên bảng giải bài tập 7a, 7b.
-Theo dõi, nhận xét, đánh giá
Vẽ hình, gợi mở để h/sinh phát hiện ra đ/thẳng
BT9 Vẽ hình, hướng dẫn học sinh nhận ra hình chiếu H của M trên mpvà cách xác định H
Hai h/sinh lên bảng giải.
Lớp theo dõi, nhận xét.
Quan sát, theo dõi đễ phát hiện
Theo dõi, suy nghĩ nhìn ra H và cách tìm H
BT7:
a/ Pt mpcó dạng:
6(x+1) – 2(y-2) – 3(z+3) = 0
Hay 6x -2y - 3z +1 = 0
b/ ĐS M(1; -1; 3).
c/ Đường thẳng thoả mãn các yêu cầu của đề bài chính là đường thẳng đi qua A và M. Ta có .
Vậy p/trình đường thẳng :
BT9 Gọi d là đường thẳng qua M và vuông góc với mp, pt đt (d) là:
d cắt tại H. Toạ độ của H là nghiệm của hệ:
Suy ra H(-3; 1; -2).
Hoạt động 4:
Hướng dẫn những bài tập 10, 11,12.
10’
10’
5’
BT 11:
-Treo bảng phụ 2
- Hướng dẫn, gợi ý học sinh phát hiện ra hướng giải bài tập 11
BT12
-Vẽ hình
-Gợi mở, hướng dẫn học sinh tìm ra cách giải bt này.
Phát phiếu HT2
- Nhìn bảng phụ
- Theo dõi, suy nghĩ và tìm ra cách giải
bài tập 11.
Nhìn hình ,suy nghĩ và tìm ra cách giải.
-Nhận phiếu và trả lời
BT 11
cắt d g/điểm M(t; -4+t; 3-t)
cắt d’ g/điểm
N(1-2t’;-3+t’;4-5t’)
Suy ra p/trình
BT12
- Tìm hình chiếu H của A trên
-A’ là điểm đối xứng của A qua
Khi H là trung điểm AA/.
Từ đó suy toạ độ A/.
4/ Củng cố toàn bài:
- Các yếu tố cần thiết để lập phương trình: đường thẳng, mặt phẳng, mặt cầu.
- Cách xác định điểm đối xứng của M qua mp, qua đường thẳng
5/ Bài tập về nhà : Hoàn thành bài tập 8; 11; 12.
V/ PHỤ LỤC
Phiếu HT 1:
Cho ; . Chọn mệnh đề sai:
A. B.
C. Cos( D.
Phiếu HT 2:
1/ Phương trình mặt cầu đường kính AB với A(4, -3, 7); B(2, 1, 3) là:
A. (x+3)2 + (y-1)2 + (z+5)2 = 9 B. (x+3)2 + (y-1)2 + (z+5)2 = 35
C. (x- 3)2 + (y+1)2 + (z-5)2 = 9 D. (x- 3)2 + (y+1)2 + (z-5)2 = 35.
2/ Phương trình mặt phẳng qua A(1, 2, 3) và song song với mặt phẳng (P): x + 2y – 3z = 0 là:
A. x + 2y – 3z – 4 = 0 B. x + 2y – 3z + 7 = 0
C. x + 2y – 3z + 4 = 0 D. x + 2y – 3z – 7 = 0
File đính kèm:
- ontaphinhch3.doc.doc