I. MỤC TIÊU.
1. Kiến thức:
- HS hiểu được: Khái niệm đơn thức A chia hết cho đơn thức B.
- Nắm vững: Khi nào đơn thức A chia hết cho đơn thức B.
- HS biết được điều kiện để đa thức chia hết cho đơn thức .
- HS hiểu quy tắc chia đa thức cho đơn thức và vận dụng tốt vào giải toán.
2. Phẩm chất:
- Sự nhạy bén, linh hoạt trong tư duy.
- Tính chính xác, kiên trì.
- Trung thực, trách nhiệm trong thực hiện nhiệm vụ học tập.
3. Năng lực:
- Năng lực chung: Năng lực giao tiếp, năng lực hợp tác, chủ động sáng tạo
- Năng lực chuyên biệt: HS được rèn năng lực tính toán, năng lực sử dụng ngôn ngữ
II. CHUẨN BỊ.
- GV: Nội dung bài học.
- HS: Ôn tập phép nhân, chia 2 luỹ thừa cùng cơ số.
III. PHƯƠNG PHÁP, KĨ THUẬT
1. Phương pháp: Vấn đáp, đàm thoại, hoạt động nhóm, luyện tập thực hành.
2. Kĩ thuật: Thảo luận nhóm, đặt câu hỏi , động não.
IV. TIẾN TRÌNH DẠY HỌC
1. Ổn định lớp: Kiểm tra sĩ số.
2. Bài mới:
* Hoạt động 1: Khởi động
? Phát biểu và viết công thức chia hai luỹ thừa cùng cơ số.
Với a, b thuộc Z (b 0) thì a chia hết cho b khi nào.
4 trang |
Chia sẻ: Chiến Thắng | Ngày: 28/04/2023 | Lượt xem: 155 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Đại số Lớp 8 - Tiết 15: Chia đơn thức cho đơn thức - Năm học 2020-2021 - Trường THCS Mường Than, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 18/9/2020
Ngày giảng: 14/10(8B) - 16/10 (8D)
Tiết 15: CHIA ĐA THỨC CHO ĐƠN THỨC
I. MỤC TIÊU.
1. Kiến thức:
- HS hiểu được: Khái niệm đơn thức A chia hết cho đơn thức B.
- Nắm vững: Khi nào đơn thức A chia hết cho đơn thức B.
- HS biết được điều kiện để đa thức chia hết cho đơn thức .
- HS hiểu quy tắc chia đa thức cho đơn thức và vận dụng tốt vào giải toán.
2. Phẩm chất:
- Sự nhạy bén, linh hoạt trong tư duy.
- Tính chính xác, kiên trì.
- Trung thực, trách nhiệm trong thực hiện nhiệm vụ học tập.
3. Năng lực:
- Năng lực chung: Năng lực giao tiếp, năng lực hợp tác, chủ động sáng tạo
- Năng lực chuyên biệt: HS được rèn năng lực tính toán, năng lực sử dụng ngôn ngữ
II. CHUẨN BỊ.
- GV: Nội dung bài học.
- HS: Ôn tập phép nhân, chia 2 luỹ thừa cùng cơ số.
III. PHƯƠNG PHÁP, KĨ THUẬT
1. Phương pháp: Vấn đáp, đàm thoại, hoạt động nhóm, luyện tập thực hành...
2. Kĩ thuật: Thảo luận nhóm, đặt câu hỏi , động não...
IV. TIẾN TRÌNH DẠY HỌC
1. Ổn định lớp: Kiểm tra sĩ số.
2. Bài mới:
* Hoạt động 1: Khởi động
? Phát biểu và viết công thức chia hai luỹ thừa cùng cơ số.
Với a, b thuộc Z (b 0) thì a chia hết cho b khi nào.
Hoàn thành công thức sau:
xn . xm = ... ; xm : xn= ...
Đáp án: xn . xm = xm+n ; xm : xn= xm -n
- Áp dụng tính: 54:52 ; x10 : x6 với x ¹ 0 ; x3: x3 với x ¹ 0
- Chúng ta đã biết khi nào thì một số a chia hết cho một số b, vậy một đa thức A chia hết cho một đa thức B khi nào? Và muốn chia đơn thức cho đơn thức ta làm thế nào, chúng ta đi vào bài hôm nay.
* Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS
Ghi bảng
- GV đưa ra quy tắc và khắc sâu điều kiện x ¹ 0, m > n , m = n.
- HS nhận biết
- GV y/c cả lớp làm ?1
- GV gọi 3 HS lên bảng làm.
- HS nhận xét kết quả.
? Nêu nhận xét về biến.
? Phép chia 20x5 : 12x có phải là phép chia hết không? Vì sao.
- không phải là một số nguyên nhưng x4 là một đơn thức nên phép chia trên là phép chia hết.
- GV gọi 2 HS khác làm ?2
HS lên bảng làm
- GV: Cho 2 biểu thức A, B.
? Khi nào đơn thức A chia hết cho đơn thức B.
? Tìm điều kiện A, B.
? Thực hiện phép chia như thế nào.
- GV chốt lại nội dung phần quy tắc khi chia đơn thức A cho đơn thức B.
- HS đọc quy tắc trong SGK
? Để chia đơn thức A cho đơn thức B ta thực hiện mấy bước. Nêu từng bước.
- GV củng cố và khắc sâu kiến thức.
+ Chia hệ số cho hệ số.
+ Phần biến chia cho phần biến.
+ Nhân các kết quả tìm được.
1. Quy tắc chia đơn thức cho đơn thức.
* Với mọi x ¹ 0; (m, nÎN); mn thì:
+ xm : xn = xm-n (nếu m > n)
+ xm : xn =1 (nếu m = n)
?1 Làm tính chia
a, x3 : x2 = x3 - 2 = x
b, 15x7: 3x2 = 5x5
c, 20x5 : 12x = x4
?2 .Tính :
a, 15x2y2 : 5xy2 = 3x
b, 12x3y : 9x2 = xy
* Nhận xét: SGK trang 26
* Quy tắc: SGK trang 26
- GV cho HS làm ?1 SGK – T27
- Sau khi HS làm xong GV chỉ vào ví dụ và nói : ở ví dụ này, em vừa thực hiện phép chia một đa thức cho một đơn thức, thương Của phép chia chính là đa thức .
- Vậy muốn chia một đa thức cho một đơn thức ta làm thế nào ?
- HS Phát biểu quy tắc
Một đa thức muốn chia hết cho đơn thức thì cần điều kiện gì ?
- HS : Một đa thức muốn chia hết cho đơn thức thì thì tất cả các hạng tử của đa thức phải chia hết cho đơn thức
- GV giới thiệu ví dụ - SGK nhằm giúp HS biết cách vận dụng quy tắc vào giải bài tập
- GV chú ý HS cách giải khi thực hành
2. Quy tắc chia đa thức cho đơn thức.
?1
(15x2y5 + 12x3y2 – 10xy3) : 3xy2
= (15x2y5 : 3xy2) + (12x3y2 : 3xy2)
– (10xy3 : 3xy2)
=
* Quy tắc (SGK- T27)
* Ví dụ : Thực hiện phép tính
(30x4y3 – 25x2y3 – 3x4y4) : 5x2y3
= (30x4y3 : 5x2y3) – (25x2y3 :
: 5x2y3) – (3x4y4 : 5x2y3)
=
* Chú ý : Trong thực hành ta có thể tính nhẩm và bỏ bớt một số phép tính trung gian
- GV: Áp dụng qui tắc trên ta làm bài tập ?3
? Cho P = 12x4y2 : (-9y2). Tính giá trị của biểu thức P tại x =-3 và y = 1,005.
? Làm thế nào tính giá trị của đa thức trên.
- GV hướng dẫn HS lên thực hiện.
- HS thực hiện theo hướng dẫn.
- GV y/c HS thực hiện ?2.(SGK – T28)
- GV đưa đề bài lên bảng phụ
Gợi ý: Em hãy thực hiện phép chia theo quy tắc đã học
? Vậy bạn Hoa giải sai hay đúng
- Để chia một đa thức cho một đơn thức, ngoài áp dụng quy tắc, ta còn có thể làm thế nào?
- HS: Có thể phân tích đa thức bị chia thành nhân tử mà có chứa nhân tử là đơn thức rồi thực hiện tương tự như chia một tích cho một số .
2. Áp dụng
?3
a, 15x3y5z : 5x2y3 = 3xy2z
b, P = 12x4y2 : (-9xy2) = x3
Thay x = -3 và y = 1,005 ta được:
P = .(-3)3 = 36
?2
a/ Bạn Hoa giải đúng
b/ (20x4y – 25x2y2 – 3x2y) : 5x2y
=
* Hoạt động 3: Luyện tập.
- Yêu cầu HS nhắc lại quy tắc chia đơn thức cho đơn thức, chia đa thức cho đơn thức.
HS hoạt động nhóm bàn, thảo luận trong 3 phút.
Bài 1: Điền đúng (Đ) sai ( S)
Cho A = 5x4 - 4x3 + 6x2y
B = 2x2
C = 15xy2 + 17xy3 +18y2
D = 6y2
Gv: phát phiếu học tập ghi bài tập
- GV y/c các nhóm khác nhận xét, bổ sung
- GV chốt lại kết quả đúng.
Khẳng định
Đúng hay sai
A không chia hết cho B vì 5 không chia hết cho 2
A chia hết cho B vì mọi hạng tử A đều chai hết cho B
C chia hết cho D vì mọi hạng tử của C đều chia hết cho D
A không chia hết cho D vì mọi hạng tử của A đều không chia hết cho D
* Hoạt động 4: Vận dụng
- HS làm bài 60
- 3 HS lên bảng làm.
a, x10 : ( - x )8
b, (- x )5 : (- x )3
c, ( - y )5 : ( - y )4
- Lưu ý HS: Luỹ thừa bậc chẵn của hai số đối nhau thì bằng nhau.
Bài 1. Tính.
a) 5 : (-5) = 5 b) x : (-x) = x
c) 5x y : 10x y = y d) x y : (- x y) = - xy
Bài 2. Tính.
a) (-2x5+ 6x2- 4x3) : 2x2 = x3+ 6 - 4x
b) [ 3( x-y)4+2(x-y)3-5(x-y)2] : (y-x)2 =3(x-y)2+2(x-y)-5
* Hoạt động 4: Tìm tòi, mở rộng.
Bài tập: Tìm n để mỗi phép chia sau là phép chia hết ( n là số tự nhiên)
a, ( 5x3 - 7x2 + x) : 3xn
b, ( 13x4y3 - 5x3y3 + 6x2y2) : 5xnyn
5. HƯỚNG DẪN VỀ NHÀ
- Nắm vững nội dung phần nhận xét, qui tắc làm phép chia.
- Nghiên cứu trước bài: Chia đa thức cho đơn thức.
- Học kĩ quy tắc, nắm vững khái niệm đa thức A chia hết cho đơn thức B, khi nào đơn thức A chia hết cho đơn thức B .
- Làm những bài tập còn lại. Xem bài tiếp theo
- BTVN: 59, 61, 63,64, 65 (SGK - T26; 27; 28; 29).
File đính kèm:
- giao_an_dai_so_lop_8_tiet_15_chia_don_thuc_cho_don_thuc_nam.doc