A - Mục đích yêu cầu :
Mục đích : - Giảng dạy cho học sinh kiến thức cơ bản về phương trình mặt phẳng trong hệ toạ độ Oxyz; trên cơ sở học sinh đã nắm vững phương trình (tổng quát) của đường thẳng (học kì 1),và kỹ năng về vectơ trong hệ toạ độ Oxyz.
Yêu cầu : - Giáo viên cần nhấn mạnh sự tương ứng các kết quả trong hệ toạ độ Oxy so với hệ toạ độ Oxyz.
- Học sinh cần nắm vững lí thuyết cơ bản.
- Vận dụng linh hoạt vào các dạng bài toán lập phương trình mặt phẳng.qua đó học sinh hiểu sâu sắc hơn đối tượng mặt phẳng trong hệ toạ độ Oxyz.
B- Chuẩn bị : - Chuẩn bị các biểu tổng kết, hình vẽ minh hoạ.
C- Nội dung :
4 trang |
Chia sẻ: quynhsim | Lượt xem: 499 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Đại số 10 - Bài 4: Phương trình tổng quát của mặt phẳng (tiết 1), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Thứ 3 ngày 25 tháng 2 năm 2003.
Bài 4 : Phương trình tổng quát của mặt phẳng. ( Tiết 1)
A - Mục đích yêu cầu :
ã Mục đích : - Giảng dạy cho học sinh kiến thức cơ bản về phương trình mặt phẳng trong hệ toạ độ Oxyz; trên cơ sở học sinh đã nắm vững phương trình (tổng quát) của đường thẳng (học kì 1),và kỹ năng về vectơ trong hệ toạ độ Oxyz.
ã Yêu cầu : - Giáo viên cần nhấn mạnh sự tương ứng các kết quả trong hệ toạ độ Oxy so với hệ toạ độ Oxyz.
Học sinh cần nắm vững lí thuyết cơ bản.
- Vận dụng linh hoạt vào các dạng bài toán lập phương trình mặt phẳng...qua đó học sinh hiểu sâu sắc hơn đối tượng mặt phẳng trong hệ toạ độ Oxyz.
B- Chuẩn bị : - Chuẩn bị các biểu tổng kết, hình vẽ minh hoạ.
C- Nội dung :
Các bước lên lớp
1. ổn định tổ chức : (2’).
- Giới thiệu đại biểu .
- Kiểm tra sĩ số .
Kiểm tra bài cũ : (10’)
Câu hỏi 1 : Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M 0=(x0 , y0) và vectơ
n = ( A,B). Viết phương trình tổng quát của đường thẳng qua M0 và nhận n là vectơ pháp tuyến.
Câu hỏi 2 : Trong không gian với hệ toạ độ Oxyz cho 3 điểm : P=(1,-1,0); Q=(2,0,-2);
R=(3,1,-2).
a/ Chứng minh rằng ba điểm P,Q,R lập thành một tam giác.
b/ Cho điểm M=(-3,-5,0). Chứng minh điểm M đồng phẳng với 3 điểm P,Q,R
Công việc của thầy, trò
- Lớp trưởng báo cáo sĩ số.
+ Đủ.
+ Vắng : Phép
Không phép
- Học sinh lên bảng :
1 .Pt : A(x-xo) + B(y-yo)= 0
Û Ax + By + C = 0
n = ( A,B)
( Với C=-Axo-Byo)
M 0=(x0 , y0)
ã
(D)
2. a/ Ta có :
[ PQ, PR ] = (2,-2,0) ạ 0 nên PQ, PR không cùng phương hay P,Q,R lập thành 1 tam giác.
Bài mới :
Vectơ pháp tuyến của mặt phẳng :
k n
a/ Định nghĩa : Vectơ n ( n ạ 0) được gọi là vectơ của mặt phẳng (a) nếu nằm trên đường thẳng vuông góc với (a).
n
(a)
ã Nhận xét :
- Một mặt phẳng có
vô số vtpt, các vtpt luôn
cùng phương với nhau.
- Mặt phẳng (a) xác định duy nhất khi biết 1 điểm thuộc nó và một vectơ pháp tuyến của nó.
b/ Chú ý : Cho u=(x1,y1,z1); v=(x2,y2,z2) là hai vectơ không cùng
phương và các đường
thẳng chứa chúng song
song hoặc nằm trên (a)
thì vectơ :
là một vectơ pháp tuyến của mp (a)
( u , v gọi là cặp vectơ chỉ phương của mp (a) )
Phương trình tổng quát của mặt phẳng :
a/ Định lí : Trong không gian với hệ toạ độ Oxyz, mỗi mặt phẳng là tập hợp tất cả các điểm có tọa độ (x,y,z) thoả mãn một phương trình dạng :
(1)Ax + By + Cz + D = 0 ( với A2 + B2 + C2 ạ 0).
Ngược lại : tập hợp tất cả các điểm thoả mãn
b/ Ta có : PM = (-4,-4,0)
[ PQ, PR ]. PM =8-8+0=0.
nên PQ, PR, PM đồng phẳng, hay M,P,Q,R đồng phẳng.
- Học sinh tự phát biểu khái niệm vt pháp tuyến của mp
? Nếu vectơ n là vtpt của mp (a) thì nó có duy nhất không ?
? Nếu cho 1 điểm Mo và 1 vectơ n . Hỏi có bao nhiêu mp qua Mo và nhận n là vtpt.
? Có nhận xét gì về phương của vectơ n với u và v . Từ đó kết luận gì về vectơ n đối với mp (a).
? Theo chiều thuận : giả thiết là gì ? Kết luận là gì ?
Chứng minh :
Thuận : Cho mp (a) đi qua M 0=(x0 , y0,zo) và có một vectơ pháp tuyến là n = (A,B,C).
Suy ra M(x,y,z) ẻ (a) Û
M0M . n =0 Û A(x-xo)+B(y-yo)+C(z-zo)=0
Û Ax+By+Cz+D=0 (D=-Axo-Byo-Czo) (đpcm)
Đảo : Cho pt (1)Ax+By+Cz+D=0. Lấy M(x,y,z) bất kỳ thoả mãn (1), ta cm quỹ tích M là một mp. Thật vậy lấy 1 điểm cố định thoả mãn (1) và 1 vectơ có toạ độ n =(A,B,C). Xét MoM . n =
= A(x-xo)+B(y-yo)+C(z-zo) = 0. Suy ra MoM ^ n
Vậy pt (1) là quĩ tích các điểm M trong không gian sao cho MMo vuông góc với n cho trước nên pt (1) là pt của 1 mp. ( đpcm).
b/ Định nghĩa : Phương trình dạng :
(1)Ax + By + Cz + D= 0 ( với A2 + B2 + C2 ạ 0).
được gọi là phương trình tổngquát củamặt phẳng
c/ Chú ý : ã Nếu mp (a) đi qua M 0=(x0 , y0,zo), có 1 vtpt là n =(A,B,C) thì pt của nó là :
A(x-xo)+B(y-yo)+C(z-zo)=0
ã Nếu (a) có pt là : Ax + By + Cz + D= 0 thì n =(A,B,C) là 1 vtpt của (a)
Ví dụ 1 : Cho 2 điểm M=(2, -1/2 , 0); N(0,5/2 ,0) Lập phương trình mặt phẳng(a)- mp trung trực của đoạn thẳng MN.
LG :
? Cho mp (a) là tập hợp các điểm M=(x,y,z), điều kiện để M ẻ (a) là gì ? Học sinh tự hình thành cm.
? Theo chiều đảo : giả thiết là gì ? Kết luận là gì ?
(a)
n
? Nhắc lại khái niệm mp trung trực của đoạn thẳng.
? Để lập pt mặt phẳng trung trực MN cần biết những yếu tố nào ?
? Học sinh thực hiện
Ta có (a) đi qua trung điểm I=(1,1,0) của MN và nhận MN = (-2,3,0) là vtpt. Suy ra phương trình (a) là :
-2(x-1)+3(y-1)+0 = 0 Û 2x-3y+1 = 0.
Ví dụ 2 : Cho 3 điểm M (1,2,-2); N=(-1,0,-2);
P=(3,-1,-2). Lập pt mặt phẳng đi qua 3 điểm trên.
LG :
Ta có MN = (-2,-2,0) ; MP=(2,-3,0)
Mặt phẳng (MNP) đi qua M nhận n là vectơ pháp tuyến nên pt là :
z+2 =0
Củng cố kiến thức :
- Giáo viên giới thiệu một số trường hợp đặc biệt ( Bảng biểu kèm theo),
- Tổng kết lí thuyết quan trọng và so sánh những đặc trưng về pt mặt phẳng trong hệ tọa độ Oxyz với pt tổng quát của đường thẳng trong hệ toạ độ Oxy.
Bài tập về nhà và hướng dẫn làm bài :
- Bài tập SGK : 2,3,6,8 trang 82/83.
5. Đánh giá kết quả học tập của học sinh sau tiết dạy :
? Có nhận xét gì về vectơ
MN = (-2,3,0) và vectơ đơn vị trục oz : k = (0,0,1)
Từ đó nhận xét vị trí tương đối giữa (a) và trục oz.
? Xác định các yếu tố cần thiết để lập pt mặt phẳng (MNP)
? Học sinh tự thực hiện.
? Nhận xét vị trí tương đối giữa mp ( MNP) với mp
(Oxy).
( Giáo viên phân tích các yếu tố cần thiết.
File đính kèm:
- Hinh hoc.doc