Giải đề thi thủ đại học từ đề số 20 đến đề số 30

Câu I: 2) Phương trình hoành độ giao điểm của (Cm) và d: (1)

 

(d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C (2) có 2 nghiệm phân biệt khác 0.

.

Mặt khác:

Do đó:

với là hai nghiệm của phương trình (2).

 

(thỏa (a)). Vậy .

Câu II: 1) * Đặt: điều kiện: t > 0. Khi đó BPT 

• :

• :

 Vậy, bất phương trình có nghiệm:

2) PT

Đặt: . Vì: và , nên: với

Ta có: (1)

Đặt:

Xét hàm số: , với t < 0  

Từ BBT ta suy ra: (1) có nghiệm  (2) có nghiệm t < 0

 (d) và (P) có điểm chung, với hoành độ t < 0 .

Vậy, giá trị m cần tìm:

 

doc21 trang | Chia sẻ: oanhnguyen | Lượt xem: 1205 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giải đề thi thủ đại học từ đề số 20 đến đề số 30, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Hướng dẫn Đề số 21 Câu I: 2) Phương trình hoành độ giao điểm của (Cm) và d: (1) (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C (2) có 2 nghiệm phân biệt khác 0. . Mặt khác: Do đó: với là hai nghiệm của phương trình (2). (thỏa (a)). Vậy . Câu II: 1) * Đặt: điều kiện: t > 0. Khi đó BPT Û · : · : Þ Vậy, bất phương trình có nghiệm: 2) PT Đặt: . Vì: và , nên: với Ta có: (1) Đặt: Xét hàm số: , với t < 0 Þ Þ Từ BBT ta suy ra: (1) có nghiệm Û (2) có nghiệm t < 0 Û (d) và (P) có điểm chung, với hoành độ t < 0 . Vậy, giá trị m cần tìm: Câu III: Đặt : Þ = Câu IV: Dựng và SH là đường cao của hình chóp. Dựng D SHN = D SHP Þ HN = HP. D AHP vuông có: ; D SHP vuông có: Thể tích hình chóp Câu V: Với thì và · · Đặt: Þ · Từ BBT ta có: . Vậy: . Câu VI.a: 1) Gọi C(a; b) , (AB): x –y –5 =0 Þ d(C; AB) = Þ ; Trọng tâm GÎ (d) Þ 3a –b =4 (3) Từ (1), (3) Þ C(–2; 10) Þ r = Từ (2), (3) Þ C(1; –1) Þ . 2) d(A, (d)) = Phương trình mặt cầu tâm A (1; –2; 3), bán kính R = : (x – 1)2 + (y + 2)2 + (2 – 3)2 = 50 Câu VII.a: PT Û Û (1) Đặt ẩn số phụ: t = . (1) Û Đáp số có 4 nghiệm z : 1+i; 1- i ; . Câu VI.b: 1) (C1): có tâm , bán kính R1 = 2. (C2): có tâm , bán kính R2 = 1. Ta có: Þ (C1) và (C2) tiếp xúc ngoài nhau tại A(3; 1) Þ (C1) và (C2) có 3 tiếp tuyến, trong đó có 1 tiếp tuyến chung trong tại A là x = 3 // Oy. * Xét 2 tiếp tuyến chung ngoài: ta có: Vậy, có 3 tiếp tuyến chung: 2) (d1) có vectơ chỉ phương ; (d2) có vectơ chỉ phương Giả sử (d ) cắt (d1) tại . Vậy, phương trình tham số của đường thẳng (d ): . Câu VII.b: Xét đa thức: · Ta có: · Mặt khác: · Từ (a) và (b) suy ra: Hướng dẫn Đề số 22 www.1000dethi.com Câu I: 2) Ta có: y’ = 3x2 + 6x = 0 Vậy hàm số có hai điểm cực trị A(0 ; m) và B(-2 ; m + 4) Ta có: . Để thì Câu II: 1) PT Û Û (sinx + cosx)(sin2x - 1) = 0 2) Điều kiện: x £ 3. Đặt . BPT Û Với Câu III: Hoành độ giao điểm là nghiệm của phương trình: Diện tích cần tìm Đặt x - 1 = sin t; Þ dx = cost ; Với Þ Câu IV: Kẻ SH ^ BC. Suy ra SH ^ (ABC). Kẻ SI ^ AB; SJ ^ AC. Þ Þ DSIH = DSJH Þ HI = HJ Þ AIHJ là hình vuông Þ I là trung điểm AB Þ Trong tam giác vuông SHI ta có: . Vậy: Câu V: Sử dụng BĐT: Ta có: Tương tự đối với 2 biểu thức còn lại. Sau đó cộng vế với vế ta được: Câu VI.a: 1) Đường thẳng (D) có phương trình tham số: Mặt phẳng (P) có VTPT Giả sử N(-1 + 3t ; 2 - 2t ; 2 + 2t) Î D Þ Để MN // (P) thì Þ N(20; -12; 16) Phương trình đường thẳng cần tìm : 2) Phương trình AB : x + 2y - 1 = 0 ; . Gọi hc là đường cao hạ từ C của DABC. Giả sử C(2a + 1 ; a) Î (D). Vì Vậy có hai điểm cần tìm: C1(7; 3) và C2(-5; -3) Câu VII.a: Từ giả thiết suy ra: Câu VI.b: 1) I có hoành độ và Gọi M = d Ç Ox là trung điểm của cạnh AD, suy ra M(3;0). , suy ra phương trình AD: . Lại có MA = MD = . Vậy tọa độ A, D là nghiệm của hệ phương trình: hoặc . Vậy A(2;1), D(4;-1), là trung điểm của AC, suy ra: Tương tự I cũng là trung điểm BD nên ta có: B(5;4). Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1). 2) Mặt cầu (S) tâm I(2;–1;3) và có bán kính R = 3. Khoảng cách từ I đến mặt phẳng (P): . Do đó (P) và (S) không có điểm chung. Do vậy, min MN = d –R = 5 –3 = 2. Trong trường hợp này, M ở vị trí M0 và N ở vị trí N0. Dễ thấy N0 là hình chiếu vuông góc của I trên mặt phẳng (P) và M0 là giao điểm của đoạn thẳng IN0 với mặt cầu (S). Gọi D là đường thẳng đi qua I và vuông góc với (P), thì N0 là giao điểm của D và (P). Đường thẳng D có VTCP là và qua I nên có phương trình là . Tọa độ của N0 ứng với t nghiệm đúng phương trình: Suy ra . Ta có Suy ra M0(0;–3;4) Câu VII.b: Ta có: PT Û z2 - 2(1 + i)z +2i = 0 Û z2 - 2(1 + i)z + (i + 1)2 = 0 Û (z - i - 1)2 = 0 Û z = i + 1. Hướng dẫn Đề số 23 www.1000dethi.com Câu I: 2) · : PT có 1 nghiệm duy nhất · m = hoặc m = : PT có 2 nghiệm (1 đơn, 1 kép) · m: PT có 3 nghiệm phân biệt Câu II: 1) PT Û cosx(1 + cosx) + 8 = 0 Û Û 2) PT Û Câu III: I = = = = ln(e3x + e2x – ex + 1) = ln11 – ln4 = Vậy eI = . Câu IV: Ta có SABC = SABCD – SADC = . VASBC = SABC.SA = Câu V: P = = = 2 ≥ 2. Vậy minP = 2 khi và chỉ khi A = B = C = Câu VI.a: 1) (C) có tâm I(0;2), bán kính R = 3. Gọi I’ là điểm đối xứng của I qua M Þ I¢ Þ (C¢): 2) Gọi (P) là mặt phẳng qua I và D1 Þ (P): 3x – y + 2z + 2 = 0 Gọi (Q) là mặt phẳng qua I và D2 Þ (Q): 3x – y – 2z + 2 = 0 Þ Phương trình của (d) = (P) Ç (Q) Câu VII.a: Ta có D = [–3;–2]È[2;3] · y’ = 3x2 – 3, y’ = 0 Û x = ± 1 Ï D · y(–3) = –18, y(–2) = –2, y(2) = 2, y(3) = 18 Þ kết quả. Câu VI.b: 1) Đường tròn (C) có tâm I(2;1) và bán kính . Gọi A, B là hai tiếp điểm. Nếu hai tiếp tuyến này lập với nhau một góc 600 thì IAM là nửa tam giác đều suy ra . Như thế điểm M nằm trên đường tròn (T) có phương trình: . Mặt khác, điểm M nằm trên đường thẳng D, nên tọa độ của M nghiệm đúng hệ phương trình: Khử x giữa (1) và (2) ta được: Vậy có hai điểm thỏa mãn đề bài là: hoặc 2) Phương trình tham số của : Gọi M và N lần lượt là giao điểm của đường vuông góc chung với D1 và D2 Þ M(7 + t¢;3 + 2t¢;9 – t¢) và N(3 –7t;1 + 2t;1 + 3t) VTCP lần lượt của D1 và D2 là = (1; 2; –1) và = (–7;2;3) Ta có: . Từ đây tìm được t và t¢ Þ Toạ độ của M, N. Đường vuông góc chung chính là đường thẳng MN. Câu VII.b: Gọi nghiệm thuần ảo là z = ki (k Î R) Ta có : (ki)3 + ( 1 – 2i)(ki)2 + ( 1 – i)ki – 2i = 0 Û – k3i – k2 + 2k2i + ki + k – 2i = 0 ( –k2 + k) + (–k3 + 2k + k – 2)i = 0 Û Û k = 1 Vậy nghiệm thuần ảo là z = i Þ z3 + (1 – 2i)z2 + (1 – i)z – 2i = 0 Û (z – i)[z2 + (1 – i)z + 2] = 0 Từ đó suy ra nghiệm của phương trình. Hướng dẫn Đề số 24 www.1000dethi.com Câu I: 2) . YCBT Û phương trình y' = 0 có hai nghiệm phân biệt x1, x2 thoả x1 < x2 < 1 Û Câu II: 1) · Nếu , phương trình vô nghiệm. · Nếu , nhân hai vế phương trình cho ta được: , đối chiếu điều kiện: k ≠ 3 + 7m, mÎZ . 2) Điều kiện: 0< x ≠ 1. Đặt: . BPT Û (*) luôn sai với mọi y > 0. Kết luận: BPT vô nghiệm. Câu III: Đặt : Do đó: Câu IV: Nhận xét: Tâm O của lục giác đều ABCDEF là trung điểm của các đường chéo AD, BE, CF. SO ^(ABCDEF). Các tam giác OAB, OBC, OCD, ODE,OEF, OFA là các tam giac đều bằng nhau cạnh b. Diện tích đáy: Sđáy = 6SDOAB =(đvdt) Chiều cao h = SO = Þ Thể tích V = * Xác định được d(SA, BE) = d(O, (SAF)) = OJ. Chứng minh OJ ^(SAF) Trong DSOJ vuông tại O ta có OJ = Câu V: Đặt A = , B = · Nếu y = 0 thì A = B = x2 Þ 0 £ B £ 3. · Nếu y ≠ 0, ta đặt khi đó: . Xét phương trình: (a). (a) có nghiệm Û Vì 0 £ A £ 3 Þ . Đây là điều phải chứng minh. Câu VI.a: 1) Tọa độ của A nghiệm đúng hệ phương trình: Tọa độ của B nghiệm đúng hệ phương trình Đường thẳng AC đi qua điểm A(–2;4) nên phương trình có dạng: Gọi Từ giả thiết suy ra . Do đó · a = 0 . Do đó · 3a – 4b = 0: Chọn a = 4 thì b = 3. Suy ra (trùng với ). Do vậy, phương trình của đường thẳng AC là y – 4 = 0. Tọa độ của C nghiệm đúng hệ phương trình: 2) Tọa độ của trung điểm I của AB là: I(2; 2; 0) Þ Phương trình đường thẳng KI: . Gọi H là hình chiếu của I lên (a) Þ H(–1; 0; 1). Giả sử K(xk; yk; zk), khi đó: và Từ yêu cầu bài toán ta có hệ: . Kết luận: . Câu VII.a: Ta có: Û ( đúng) Þ (đpcm). Câu VI.b: 1) Tọa độ giao điểm A, B là nghiệm của hệ phương trình Vì A có hoành độ dương nên ta được A(2;0), B(–3;–1). Vì nên AC là đường kính đường tròn, tức điểm C đối xứng với điểm A qua tâm I của đường tròn. Tâm I(–1;2), suy ra C(–4;4). 2) Vì AÎ D1 Þ A(t+1; –t –1; 2); BÎ D2 Þ B( t'+3; 2t' +1; t') Þ Vì đoạn AB có độ dài nhỏ nhất Û AB là đoạn vuông góc chung của (D1) và (D2) Þ Þ A( 1; –1; 2), B(3; 1; 0). Câu VII.b: Nhận xét: Số chia hết cho 15 thì chia hết 3 và chia hết 5. · Các bộ số gồm 5 số có tổng chia hết cho 3 là: (0; 1; 2; 3; 6), (0; 1; 2; 4; 5), (0; 1; 3; 5; 6), (0; 2; 3; 4; 6), (0; 3; 4; 5; 6),(1; 2; 3; 4; 5), (1; 2; 4; 5; 6). · Mỗi số chia hết cho 5 khi và chỉ khi số tận cùng là 0 hoặc 5. + Trong các bộ số trên có 4 bộ số có đúng một trong hai số 0 hoặc 5 Þ 4.P4 = 96 số chia hết cho 5. + Trong các bộ số trên có 3 bộ số có cả 0 và 5. Nếu tận cùng là 0 thì có P4= 24 số chia hết cho 5. Nếu tận cùng là 5 vì do số hàng chục nghìn không thể là số 0, nên có 3.P3=18 số chia hết cho 5. Trong trường hợp này có: 3(P4+3P3) = 126 số. Vậy số các số theo yêu cầu bài toán là: 96 + 126 = 222 số. Hướng dẫn Đề số 25 www.1000dethi.com Câu I: 2) Ta có : . Điều kiện (2) có nghĩa: x > 1. Từ (2) Û x(x – 1)£ 2 Û 1 < x £ 2. Hệ PT có nghiệm Û (1) có nghiệm thoả 1 < x £ 2 Û Đặt: f(x) = (x – 1)3 – 3x và g(x) = k (d). Dựa vào đồ thị (C) Þ (1) có nghiệm x Î(1;2] Û . Vậy hệ có nghiệm Û k > – 5 Câu II: 1) Ta có: sinx – cos2x = 0 Û 2sin2x + sinx –1 = 0 Û . Vì x Î[ 2; 40] nên Þ 0,7 £ k £ 18,8 Þ k . Gọi S là tổng các nghiệm thoả YCBT: S = . 2) Điều kiện: . PT Û Û (tmđk) Câu III: Ta có : . Câu IV: Ta có: DSAC vuông tại A Þ Þ AC¢ = = a Þ DSAC¢ đều Vì (P) chứa AC¢ và (P) // BD Þ B¢D¢ // BD. Gọi O là tâm hình thoi ABCD và I là giao điểm của AC¢ và B¢D¢ Þ I là trọng tâm của DSBD. Do đó: . Mặt khác, BD ^ (SAC) Þ D¢B¢ ^ (SAC) Þ B¢D¢ ^ AC¢ Do đó: SAB'C'D' = . Đường cao h của khối chóp S.AB¢C¢D¢ chính là đường cao của tam giác đều SAC¢ Þ . Vậy thể tích của khối chóp S. AB¢C¢D¢ là V = . Câu V: Ta có BĐT Û Û (1) Đặt: . Khi đó : (1) Û (*) Vì ( theo BĐT Cô–si) Và (theo BĐT Cô–si). Do đó: (*) đúng. Vậy (1) được CM. Dấu "=" xảy ra Û x = y = z Û a = b = c. Khi đó tam giác ABC là tam giác đều. Câu VI.a: 1) Giả sử AB: 5x – 2y + 6 = 0; AC: 4x + 7y – 21 = 0. Vậy A(0;3) Đường cao đỉnh B đi qua O nhận VTCP của AC làm VTPT Þ BO: 7x – 4y = 0 Þ B(–4; –7) A nằm trên Oy Þ đường cao AO chính là trục Oy. Vậy AC: y + 7 = 0 2) Ta có I(a;0;0), J(0;b;0), K(0;0;c) Ta có: Þ phương trình mp(P) Câu VII.a: Xét nhị thức Newton: . Lấy đạo hàm đến cấp hai hai vế ta được: (1) Cho x = 1 và n = 25 từ (1) Þ 25. 24.223 = Û = 5033164800. Câu VI.b: 1) (C) có tâm I(3;0) và bán kính R = 2. M Î Oy Þ M(0;m) Qua M kẽ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) Þ Vì MI là phân giác của nên: (1) Û = 300 Û MI = 2R Û (2) Û = 600 Û MI = R Û (vô nghiệm) Vậy có hai điểm M1(0;) và M2(0; –) 2) , , Gọi (P) là mặt phẳng qua AB và (P) ^ (Oxy) (P) có VTPT = (5; –4; 0) Þ (P): 5x – 4y = 0 (Q) là mặt phẳng qua CD và (Q) ^ (Oxy) Þ (Q) có VTPT = (–2;–3; 0) Þ (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)Ç(Q) Þ Phương trình của (D) Câu VII.b: Giả sử : z = a + bi (a- phần thực, b- phần ảo) Ta có: Kết luận: Có hai số phức thoả yêu cầu bài toán: . Hướng dẫn Đề số 26 www.1000dethi.com Câu I: 2) Phương hoành độ giao điểm của (d) và (C) là: = – x + m luôn có 2 nghiệm phân biệt với mọi m Ta có A(x1; –x1 +m), B(x2; – x2 + m) AB = = Vậy GTNN của AB = khi và chỉ khi m = 2 Câu II: 1) Điều kiện: 0 < x ≠ 1. Đặt t = BPT Û 2) Điều kiện: PT – sin3x = sinx + sin2x Û sin2x(2cosx + 1) = 0 Kết hợp điều kiện, nghiệm của phương trình là: Câu III: Ta có: sinx +cosx = 2cos, sinx = sin = I = = Câu IV: Trên SB, SC lấy các điểm B¢, C¢ sao cho SB¢ = SC¢ = a. Ta có AB¢ = a, B¢C¢ = a, AC¢ = a Þ DAB¢C¢ vuông tại B¢. Gọi H là trung điểm của AC¢, thì DSHB¢ vuông tại H. Vậy SH là đường cao của hình chop S.AB¢C¢ Vậy: VS.AB’C’ = . Þ VS.ABC = Câu V: Áp dụng BĐT Cô-si ta có: . Dấu " = " xảy ra Û 2a = b + c. Tương tự: Suy ra: . Dấu bằng xảy ra Û a = b = c = . Kết luận: minP = Câu VI.a: 1) Giả sử: A(a; –a–1), B(b; 2b – 1) Từ điều kiện tìm được A(1; –2), B(1;1) suy ra (d): x – 1 = 0 2) Gọi (Q) là mặt phẳng qua A, B và vuông góc với (P) ta suy ra (Q): 8x + 7x + 11z – 46 = 0. (D) = (P)(Q) suy ra phương trình (D). Câu VII.a: PT có hai nghiệm Câu VI.b: 1) (H) có một tiêu điểm F. Giả sử pttt (d): ax + by + c = 0 . Khi đó: 9a2 – 4b2 = c2 (*) Phương trình đường thẳng qua F vuông góc với (d) là (D): b( – a y = 0 Toạ độ của M là nghiệm của hệ: Bình phương hai vế của từng phương trình rồi cộng lại và kết hợp với (*) ta được x2 + y2 = 9 2) Lập phương trình mp(ABC); (P) qua A và (P) ^ BC; (Q) qua B và (Q) ^ AC Giải hệ gồm ba phương trình ba mặt phẳng trên ta được trực tâm H Câu VII.b: Ta có: (1) = Hướng dẫn Đề số 27 Câu I: 2) Đồ thị cắt trục hoành tại 4 điểm phân biệt cách đều nhau Û phương trình có 4 nghịêm phân biệt lập thành cấp số cộng Û phương trình: X2 – (2m + 1)X + 2m = 0 (2) có hai nghiệm dương phân biệt thoả mãn X1 = 9X2. Û . Câu II: 1) PT Û 2) Xét (1): Đặt t = x – y. (1) Û . · Với t > 0 VT 10. · Với t 10, VP < 10. Þ Phương trình (1) có nghiệm duy nhất t = 0 hay x = y. Thay x = y vào phương trình (2) ta được: (2) Û . Dễ thấy x = 0 không phải là nghiệm của phương trình, chia cả hai vế cho x = 0 ta được: (2) Û . Đặt (ĐK y ³ 0). Ta được phương trình: y2 – 3y + 2 = 0 Û . Từ đó ta tìm được x. Câu III: S = . Đặt Þ Câu IV: · Chứng minh: D ACD vuông tại C Þ DACD vuông cân tại C. · VSBCD = VS.ABCD – VSABD. · Chứng minh BC ^ (SAB) Þ BC ^ AH Þ AH ^ (SBC). Kẻ AK ^ (SC) Þ AK ^ (SCD) Þ (AKH) ^ (SCD). Kéo dài AB và CD cắt nhau tại E. Kéo dài AH cắt SE tại M. Có (AMK) ^ (SCD) hay (AMK) ^ (SED). AH ^ (SBC) Þ AH ^ HK Þ tam giác AHK vuông tại H. Kẻ HI ^ MK có HI = d(H, (SCD)). · Tính AH, AM Þ HM; Tính AK Þ HK. Từ đó tính được HI. Câu V: Áp dụng bất đẳng thức Cô-si, ta có: 4ab ≤ (a + b)2 . Dấu "=" xảy ra Û a = b. Ta có: Tương tự: và Vậy Vậy MaxP = khi x = y = z = Câu VI.a: 1) C nằm trên mặt phẳng trung trực của AB. 2) Tọa độ giao điểm A, B là nghiệm của hệ phương trình Vì A có hoành độ dương nên ta được A(2;0), B(–3;–1). Vì nên AC là đường kính đường tròn, tức là điểm C đối xứng với điểm A qua tâm I của đường tròn. Tâm I(–1;2), suy ra C(–4;4). Câu VII.a: Phương trình: có nghiệm duy nhất n = 19. (Vì VT là hàm số đồng biến nên đồ thị cắt đường thẳng y = 4 tại một điểm duy nhất) Câu VI.b: 1) Mặt cầu nhận đoạn vuông góc chung của hai đường thẳng là đường kính. 2) Ta có: . Phương trình của AB là: . . I là trung điểm của AC và BD nên: Mặt khác: (CH: chiều cao) . Ngoài ra: Vậy tọa độ của C và D là hoặc Câu VII.b: Đặt . Ta được phương trình: 3t + 4t = 5t . Phương trình có nghiệm duy nhất t = 2. Þ n2 – 2n + 6 = 9 Û n2 – 2n – 3 = 0 Û n =3 Hướng dẫn Đề số 28 www.1000dethi.com Câu I: 2) Câu II: 1) PT Û - cos22x - cosxcos2x = 2cos2x và sin2x ¹ 0 Û Û cos2x = 0 Û 2) Đặt Û t2 - 2 = x2 - 2x. BPT Û Khảo sát hàm số: với 1 £ t £ 2. g'(t) Þ g tăng trên [1,2] Do đó, YCBT BPT có nghiệm t Î [1,2] Vậy: m Câu III: Đặt Þ = Câu IV: Chọn hệ trục Oxyz sao cho: A º O, , , Ta có thể tích khối tứ diện AA1BM là : Suy ra khoảng cách từ A đến mp (BMA1) bằng Câu V: Áp dụng BĐT Cô–si, ta có: Þ đpcm Câu VI.a: 1) Vì khoảng cách đại số của A và B cùng dấu nên A, B ở cùng phía với (P) Gọi A' là điểm đối xứng với A qua (P) ; PT (AA'): AA' cắt (P) tại H, tọa độ H là nghiệm của hệ PT: Vì H là trung điểm của AA' nên ta có : Ta có (cùng phương với (1;–1;3) ) Þ PT (A'B) : Vậy tọa độ điểm M là nghiệm của hệ phương trình 2) Câu VII.a: PT Đặt: , (x0) Từ BBT Þ max f(x) = 3; min g(x) = 3 Þ PT f(x)= g(x) có nghiệm Û maxf(x) = min g(x) = 3 tại x=1 Þ PT có nghiệm x = 1 Câu VI.b: 1) Gọi P là chu vi của tam giác MAB thì P = AB + AM + BM. Vì AB không đổi nên P nhỏ nhất khi và chỉ khi AM + BM nhỏ nhất. Đường thẳng D có PTTS: . Điểm nên . Trong mặt phẳng tọa độ Oxy, ta xét hai vectơ và . Ta có Suy ra và Mặt khác, với hai vectơ ta luôn có . Như vậy Đẳng thức xảy ra khi và chỉ khi cùng hướng và . Vậy khi M(1;0;2) thì minP = 2) Câu VII.b: Điều kiện x > 0 , x ¹ 1 BPT Hướng dẫn Đề số 29 Câu I: 2) Ta có ; (m<0) Gọi A(0; m2+m); B(; m); C(–; m) là các điểm cực trị. ; . DABC cân tại A nên góc chính là . Vậy m= thoả mãn bài toán. Câu II: 1) Điều kiện . Nhân hai vế của bpt với , ta được BPT Kết hợp với điều kiện ta được . 2) Điều kiện . Ta có PT . Câu III: Nhận xét: Do đó diện tích hình phẳng cần tìm là: == Suy ra S= (đvdt) Câu IV: Ta có AO=OC=a Suy ra V=B.h= Tính góc giữa AM và A¢C. Gọi N là trung điểm AD, suy ra AM // CN. Xét DA¢CN ta có: . Þ Vậy cosin của góc giữa AM và A¢C bằng . Câu V: Đặt với ta có . Xét hàm số với . Ta có (loại); . Vậy . Suy ra . Vậy GTLN của A là 10 đạt được khi và GTNN của A là 0 đạt được khi . Câu VI.a: 1) Ta có . Mặt khác với AB= Þ IH = 2. Gọi vì I thuộc đường thẳng y=x, ta có phương trình (AB) là y = 0; IH = 2 TH1: TH2: 2) Gọi I là tâm mặt cầu nội tiếp tứ diện OABC. Ta có: = =. Mặt khác: (đvtt); (đvdt) (đvdt) Þ (đvdt) Do đó: (đv độ dài) Câu VII.a: Ta có (1) Mặt khác: . Vậy hệ số của trong khai triển của là . Do (1) đúng với mọi x nên . Suy ra điều phải chứng minh. Câu VI.b: 1) (C) có tâm I(1;2) và R=. Suy ra Gọi H là trung điểm BC, ta có I là trọng tâm tam giác ABC vì là tam giác đều. Phương trình (BC) đi qua H và vuông góc với AI là: Vì B, C Î (C) nên tọa độ của B, C lần lượt là các nghiệm của hệ phương trình: Giải hệ PT trên ta được: hoặc ngược lại. 2) PTTS của d1 là: . M Î d1 nên tọa độ của M . Theo đề: + Với t = 1 ta được ; + Với t = 0 ta được · Ứng với M1, điểm N1 cần tìm phải là giao của d2 với mp qua M1 và // (P), gọi mp này là (Q1). PT (Q1) là: . PTTS của d2 là:  (2) Thay (2) vào (1), ta được: t = –1. Điểm N1 cần tìm là N1(–1;–4;0). · Ứng với M2, tương tự tìm được N2(5;0;–5). Câu VII.b: Điều kiện: . Hệ PT Û Hướng dẫn Đề số 30 www.1000dethi.com Câu I: 2) Tacó Với thì y’ đổi dấu khi đi qua các nghiệm do vậy hàm số có CĐ,CT. Khi đó các điểm cực trị của đồ thị là: . Để A và B đối xứng với nhau qua đường phân giác y = x, điều kiện cần và đủ là tức là: Câu II: 1) ĐK:. PT Û Û Û Û 2) PT Û . Câu III: Đặt Þ I = = Câu IV: Hình chiếu của SB và SC trên (ABC) là AB và AC, mà SB = SC nên AB = AC. Ta có : BC2 = 2AB2 – 2AB2cos1200 Û a2 = 3AB2 Û ; Þ Câu V: Ta chứng minh: (1) Thật vậy, (1) Û 3a3 ≥ (2a – b)(a2 + ab + b2) Û a3 + b3 – a2b – ab2 ≥ 0 Û (a + b)(a – b)2 0. Tương tự: (2) , (3) Cộng vế theo vế của (1), (2) và (3) ta được: Vậy: S ≤ 3 maxS = 3 khi a = b = c = 1 Câu VI.a: 1) PT mặt phẳng (P) qua O nên có dạng : Ax + By + Cz = 0 (với ) Vì (P) (Q) nên 1.A + 1.B + 1.C = 0 A + B + C = 0 Û C = –A – B (1) Theo đề: d(M;(P)) = (2) Thay (1) vào (2), ta được: · . Chọn thì (P) : · . Chọn A = 5, B = thì (P) : 2) Gọi N là điểm đối xứng của M qua (d1) . Ta có: Tọa độ trung điểm I của MN: Giải hệ (1) và (2) ta được N(–1; –3) Phương trình cạnh AC vuông góc với (d2) có dạng: x + 2y + C = 0. Vậy, phương trình cạnh AC: x + 2y + 7 = 0. Câu VII.a: :· 3 HS nữ được xếp cách nhau 1 ô. Vậy 3 HS nữ có thể xếp vào các vị trí là: (1;3;5); (2;4;6); (3;5;7); (4;6;8); (5;7;9) · Mỗi bộ 3 vị trí có 3! cách xếp 3 HS nữ. · Mỗi cách xếp 3 HS nữ trong 1 bộ, có 6! cách xếp 6 HS nam vào 6 vị trí còn lại Vậy có tất cả là: 5.3!.6!=21600 (cách) theo YCBT. Câu VI.b: 1) Chọn A(2;3;3), B(6;5;2)(d), mà A, B Î (P) nên (d) Ì (P) . Gọi là VTCP của () Ì (P), qua A và vuông góc với (d) thì nên ta chọn . Phương trình của đường thẳng () : Lấy M trên () thì M(2+3t; 39t; 3+6t). (D) là đường thẳng qua M và song song với (d). Theo đề : · t = M(1;6;5) · t = M(3;0;1) 2) Gọi là hai điểm thuộc (P), khi đó ta có: ; Theo giả thiết: , suy ra: Vậy, có 2 cặp điểm cần tìm: M(4; –2), N(1; 1) hay M(36; 6), N(9; 3). Câu VII.b: Đặt PT Û Xét hàm số Þ f(t) = m có nghiệm Û .

File đính kèm:

  • doc03 giai de thi thu dai hoc 21-30.doc