Chuyên đề Phương pháp luyện tập thể tích khối đa diện

 Hệ thức lượng trong tam giác vuông : cho ABC D vuông ở A ta có:

a) Định lý Pitago:

2 2 2

BC AB AC = +

b) CBCHCABCBHBA . ;. 2 2

= =

c) AB. AC = BC. AH

d)

2 2 2

111 AC AB AH

+=

e) BC = 2AM

f)

sin , os , tan , cot

b c b c

B c B B B

a a c b

pdf34 trang | Chia sẻ: quynhsim | Lượt xem: 560 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Chuyên đề Phương pháp luyện tập thể tích khối đa diện, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
1 c b a MH CB A CHUYÊN ĐỀ: PHƯƠNG PHÁP LUYỆN TẬP THỂ TÍCH KHỐI ĐA DIỆN I. Ôn tập kiến thức cơ bản: ÔN TẬP 1. KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 - 10 1. Hệ thức lượng trong tam giác vuông : cho ABCD vuông ở A ta có : a) Định lý Pitago : 2 2 2BC AB AC= + b) CBCHCABCBHBA .;. 22 == c) AB. AC = BC. AH d) 222 111 ACABAH += e) BC = 2AM f) sin , os , tan ,cot b c b c B c B B B a a c b = = = = g) b = a. sinB = a.cosC, c = a. sinC = a.cosB, a = sin cos b b B C = , b = c. tanB = c.cot C 2.Hệ thức lượng trong tam giác thường: * Định lý hàm số Côsin: a2 = b2 + c2 - 2bc.cosA * Định lý hàm số Sin: 2 sin sin sin a b c R A B C = = = 3. Các công thức tính diện tích. a/ Công thức tính diện tích tam giác: 1 2 S = a.ha = 1 . . . sin . .( )( )( ) 2 4 a b c a b C p r p p a p b p c R = = = - - - với 2 a b c p + + = Đặc biệt :* ABCD vuông ở A : 1 . 2 S AB AC= ,* ABCD đều cạnh a: 2 3 4 a S = b/ Diện tích hình vuông : S = cạnh x cạnh c/ Diện tích hình chữ nhật : S = dài x rộng d/ Diên tích hình thoi : S = 1 2 (chéo dài x chéo ngắn) d/ Diện tích hình thang : 1 2 S = (đáy lớn + đáy nhỏ) x chiều cao e/ Diện tích hình bình hành : S = đáy x chiều cao f/ Diện tích hình tròn : 2S .Rp= ÔN TẬP 2 KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 2 A.QUAN HỆ SONG SONG §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. a/ /(P) a (P)Û Ç =Æ a (P) II.Các định lý: ĐL1:Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P) d (P) d / /a d / /(P) a (P) ì Ë ï Þí ï Ìî d a (P) ĐL2: Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. a/ /(P) a (Q) d / /a (P) (Q) d ì ï Ì Þí ï Ç =î d a (Q) (P) ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. (P) (Q) d (P)/ /a d / /a (Q)/ /a ì Ç = ï Þí ï î a d Q P §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. (P)/ /(Q) (P) (Q)Û Ç =Æ Q P II.Các định lý: ĐL1: Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. a,b (P) a b I (P)/ /(Q) a/ /(Q),b / /(Q) ì Ì ï Ç = Þí ï î Ib a Q P 3 ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. (P) / /(Q) a / /(Q) a (P) ì Þí Ìî a Q P ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. (P) / /(Q) (R) (P) a a / /b (R) (Q) b ì ï Ç = Þí ï Ç =î b a R Q P B.QUAN HỆ VUÔNG GÓC §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I.Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. a mp(P) a c, c (P)^ Û ^ " Ì P c a II. Các định lý: ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). d a ,d b a ,b mp(P) d mp(P) a,b caét nhau ì ^ ^ ï Ì Þ ^í ï î d a b P ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). a mp(P),b mp(P) b a b a' ^ Ì ^ Û ^ a' a b P §2.HAI MẶT PHẲNG VUÔNG GÓC I.Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900. 4 II. Các định lý: ĐL1:Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. a mp(P) mp(Q) mp(P) a mp(Q) ì ^ Þ ^í Ìî Q P a ĐL2:Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). (P) (Q) (P) (Q) d a (Q) a (P),a d ì ^ ï Ç = Þ ^í ï Ì ^î d Q P a ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) (P) (Q) A (P) a (P) A a a (Q) ì ^ ï Îï Þ Ìí Îï ï ^î A Q P a ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. (P) (Q) a (P) (R) a (R) (Q) (R) ì Ç = ï ^ Þ ^í ï ^î a R QP §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng , đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)) d(O; a) = OH; d(O; (P)) = OH a H O H O P 5 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). d(a;(P)) = OH a H O P 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. d((P);(Q)) = OH H O Q P 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. d(a;b) = AB B A b a §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. b' b a'a 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). Đặc biệt: Nếu a vuông góc với mặt phẳng (P) thì ta nói rằng góc giữa đường thẳng a và mp(P) là 900. P a' a 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. Hoặc là góc giữa 2 đường thẳng nằm trong 2 mặt phẳng cùng vuông góc với giao tuyến tại 1 điểm ba QP P Q a b 6 B h a b c a a a B h 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S' Scos= j trong đó j là góc giữa hai mặt phẳng (P),(P’). j C B A S ÔN TẬP 3 KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN I/ Các công thức thể tích của khối đa diện: 1. THỂ TÍCH KHỐI LĂNG TRỤ: V= B.h với B : d ie än t íc h ñ a ùy h : c h ie àu c a o ì í î a) Thể tích khối hộp chữ nhật: V = a.b.c với a,b,c là ba kích thước b) Thể tích khối lập phương: V = a3 với a là độ dài cạnh 2. THỂ TÍCH KHỐI CHÓP: V= 1 3 Bh với B : dieän tích ñaùy h : chieàu cao ì í î 3. TỈ SỐ THỂ TÍCH TỨ DIỆN: Cho khối tứ diện SABC và A’, B’, C’ là các điểm tùy ý lần lượt thuộc SA, SB, SC ta có: SABC SA ' B ' C ' V SA SB SC V SA ' SB ' SC ' = C' B' A' C B A S 7 4. THỂ TÍCH KHỐI CHÓP CỤT: ( )hV B B' BB'3= + + với B, B' : dieän tích hai ñaùy h : chieàu cao ì í î BA C A' B' C' Chú ý: 1/ Đường chéo của hình vuông cạnh a là d = a 2 , Đường chéo của hình lập phương cạnh a là d = a 3 , Đường chéo của hình hộp chữ nhật có 3 kích thước a, b, c là d = 2 2 2a b c+ + , 2/ Đường cao của tam giác đều cạnh a là h = 3 2 a 3/ Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên đều bằng nhau ( hoặc có đáy là đa giác đều, hình chiếu của đỉnh trùng với tâm của đáy). 4/ Lăng trụ đều là lăng trụ đứng có đáy là đa giác đều. II/ Bài tập: Nội dung chính LOẠI 1: THỂ TÍCH LĂNG TRỤ 1) Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy Ví dụ 1: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có cạnh BC = a 2 và biết A'B = 3a. Tính thể tích khối lăng trụ. a 2 Lời giải: Ta có ABCV vuông cân tại A nên AB = AC = a ABC A'B'C' là lăng trụ đứng AA' ABÞ ^ 2 2 2 2AA'B AA' A'B AB 8aÞ = - =V AA' 2a 2Þ = Vậy V = B.h = SABC .AA' = 3a 2 Ví dụ 2: Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a. Tính thể tích khối lăng trụ này. ook.mathvn.com 8 A' D B' C' A' C D' C' B'B D' A 5a4a D' C' B' A' D C BA Lời giải: ABCD A'B'C'D' là lăng trụ đứng nên BD2 = BD'2 - DD'2 = 9a2 BD 3aÞ = ABCD là hình vuông 3aAB 2 Þ = Suy ra B = SABCD = 29a 4 Vậy V = B.h = SABCD.AA' = 9a3 Ví dụ 3: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ. A' C' B' A B C I Lời giải: Gọi I là trung điểm BC .Ta có VABC đều nên AB 3 3 & 2 AI 2 AI BC A'I BC(dl3 ) == ^ Þ ^ ^ A'BC A'BC 2S1S BC.A'I A 'I 4 2 BC = Þ = = AA' (ABC) AA' AI^ Þ ^ . 2 2A 'AI AA' A'I AI 2Þ = - =V Vậy : VABC.A’B’C’ = SABC .AA'= 8 3 Ví dụ 4: Một tấm bìa hình vuông có cạnh 44 cm, người ta cắt bỏ đi ở mỗi góc tấm bìa một hình vuông cạnh 12 cm rồi gấp lại thành một cái hộp chữ nhật không có nắp. Tính thể tích cái hộp này. D' A' C' B' D A C B Giải Theo đề bài, ta có AA' = BB' = CC' = DD' = 12 cm nên ABCD là hình vuông có AB = 44 cm - 24 cm = 20 cm và chiều cao hộp h = 12 cm Vậy thể tích hộp là V = SABCD.h = 4800cm 3 Ví dụ 5: Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng 9 60 D' C' B' A' D C BA 600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ. Tính thể tích hình hộp . Lời giải: Ta có tam giác ABD đều nên : BD = a và SABCD = 2SABD = 2a 3 2 Theo đề bài BD' = AC = a 32 a 3 2 = 2 2DD'B DD' BD' BD a 2Þ = - =V Vậy V = SABCD.DD' = 3a 6 2 Bài tập tương tự: Bài 1: Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ. ĐS: 3a 3V 4 = ; S = 3a2 Bài 2: Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tứ giác đều cạnh a biết rằng BD' a 6= . Tính thể tích của lăng trụ. Đs: V = 2a3 Bài 3: Cho lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là 6cm và 8cm biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ.Tính thể tích và tổng diện tích các mặt của lăng trụ. Đs: V = 240cm3 và S = 248cm2 Bài 4: Cho lăng trụ đứng tam giác có độ dài các cạnh đáy là 37cm ; 13cm ;30cm và biết tổng diện tích các mặt bên là 480 cm2 . Tính thể tích lăng trụ . Đs: V = 1080 cm3 Bài 5: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại A ,biết rằng chiều cao lăng trụ là 3a và mặt bên AA'B'B có đường chéo là 5a . Tính thể tích lăng trụ. Đs: V = 24a3 Bài 6: Cho lăng trụ đứng tứ giác đều có tất cả các cạnh bằng nhau và biết tổng diện tích các mặt của lăng trụ bằng 96 cm2 .Tính thể tích lăng trụ. Đs: V = 64 cm3 Bài 7: Cho lăng trụ đứng tam giác có các cạnh đáy là 19,20,37 và chiều cao của khối lăng trụ bằng trung bình cộng các cạnh đáy. Tính thể tích của lăng trụ. Đs: V = 2888 Bài 8: Cho khối lập phương có tổng diện tích các mặt bằng 24 m2 . Tính thể tích khối lập phương Đs: V = 8 m3 Bài 9: Cho hình hộp chữ nhật có 3 kích thước tỉ lệ thuận với 3,4,5 biết rằng độ dài một đường chéo của hình hộp là 1 m.Tính thể tích khối hộp chữ nhật. Đs: V = 0,4 m3 ook.mathvn.com 10 o60 C' B' A' C B A Bài 10: Cho hình hộp chữ nhật biết rằng các đường chéo của các mặt lần lượt là 5; 10; 13 . Tính thể tích khối hộp này . Đs: V = 6 2)Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600 . Tính thể tích lăng trụ. Lời giải: Ta có A 'A (ABC) A'A AB& AB^ Þ ^ là hình chiếu của A'B trên đáy ABC . Vậy ¼ ogóc[A'B,(ABC)] ABA' 60= = 0ABA' AA' AB.tan 60 a 3Þ = =V SABC = 21 aBA.BC 2 2 = Vậy V = SABC.AA' = 3a 3 2 Ví dụ 2: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông tại A với AC = a , ¼ACB= 60 o biết BC' hợp với (AA'C'C) một góc 300. Tính AC' và thể tích lăng trụ. a o 60 o30 C' B' A' C B A Lời giải: o a 3ABC AB AC.tan60 =Þ =V . Ta có: AB AC;AB AA' AB (AA'C'C)^ ^ Þ ^ nên AC' là hình chiếu của BC' trên (AA'C'C). Vậy góc[BC';(AA"C"C)] = ¼BC'A = 30o o ABAC'B AC' 3a tan30 Þ = =V V =B.h = SABC.AA' 2 2AA'C' AA' AC' A'C' 2a 2Þ = - =V ABCV là nửa tam giác đều nên 2 ABC a 3S 2 = Vậy V = 3a 6 Ví dụ 3: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a 11 và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 300. Tính thể tích và tổng diên tích của các mặt bên của lăng trụ . o 30 a D' C' A' B' D C B A Giải: Ta có ABCD A'B'C'D' là lăng trụ đứng nên ta có: DD' (ABCD) DD' BD^ Þ ^ và BD là hình chiếu của BD' trên ABCD . Vậy góc [BD';(ABCD)] = ¼ 0DBD' 30= 0 a 6BDD' DD' BD.tan30 3 Þ = =V Vậy V = SABCD.DD' = 3a 6 3 S = 4SADD'A' = 24a 6 3 Ví dụ 4: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và ¼BAD = 60o biết AB' hợp với đáy (ABCD) một góc 30o . Tính thể tích của hình hộp. a o30 o60 D' C'B' A' D CB A Giải ABDV đều cạnh a 2 ABD a 3S 4 Þ = 2 ABCD ABD a 3S 2S 2 Þ = = ABB'V vuông tạiB oBB' ABt an30 a 3Þ = = Vậy 3 ABCD 3aV B.h S .BB' 2 = = = Bài tập tương tự: Bài 1: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông cân tại B biết A'C = a và A'C hợp với mặt bên (AA'B'B) một góc 30o . Tính thể tích lăng trụ ĐS: 3a 2V 16 = Bài 2: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại B biết BB' = AB = a và B'C hợp với đáy (ABC) một góc 30o . Tính thể tích lăng trụ. ĐS: 3a 3V 2 = Bài 3: Cho lăng trụ đứng ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết AB' hợp với mặt bên (BCC'B') một góc 30o . Tính độ dài AB' và thể tích lăng trụ . ĐS: AB' a 3= ; 3a 3V 2 = Bài 4: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại A biết 12 AC = a và ¼ oACB 60= biết BC' hợp với mặt bên (AA'C'C) một góc 30o . Tính thể tích lăng trụ và diện tích tam giác ABC'. ĐS: 3 6V a= , S = 23a 3 2 Bài 5: Cho lăng trụ tam giác đều ABC A'B'C' có khoảng cách từ A đến mặt phẳng (A'BC) bằng a và AA' hợp với mặt phẳng (A'BC) một góc 300 . Tính thể tích lăng trụ ĐS: 332aV 9 = Bài 6: Cho hình hộp chữ nhật ABCD A'B'C'D' có đường chéo A'C = a và biết rằng A'C hợp với (ABCD) một góc 30o và hợp với (ABB'A') một góc 45o . Tính thể tích của khối hộp chữ nhật. Đs: 3a 2V 8 = Bài 7: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình vuông . Gọi O là tâm của ABCD và OA' = a .Tính thể tích của khối hộp khi: 1) ABCD A'B'C'D' là khối lập phương . 2) OA' hợp với đáy ABCD một góc 60o . 3) A'B hợp với (AA'CC') một góc 30o. Đs:1) 32a 6V 9 = ;2) 3a 3V 4 = ;3) 34a 3V 9 = Bài 8: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và BD' = a . Tính thể tích lăng trụ trong các trường hợp sau đây: 1) BD' hợp với đáy ABCD một góc 60o . 2) BD' hợp với mặt bên (AA'D'D) một góc 30o . Đs: 1)V = 3a 3 16 2)V = 3a 2 8 Bài 9: Chiều cao của lăng trụ tứ giác đều bằng a và góc của 2 đường chéo phát xuất từ một đỉnh của 2 mặt bên kề nhau là 60o.Tính thể tích lăng trụ và tổng diện tích các mặt của lăng trụ . Đs: V = a3 và S = 6a2 Bài 10 : Cho hình hộp chữ nhật ABCD A'B'C'D' có AB = a ; AD = b ; AA' = c và BD' = AC' = CA' = 2 2 2a b c+ + 1) Chúng minh ABCD A'B'C'D' là hộp chữ nhật. 2) Gọi x,y,z là góc hợp bởi một đường chéo và 3 mặt cùng đi qua một đỉng thuộc đường chéo. Chứng minh rằng 2 2 2sin x sin y sin z 1+ + = . 3) Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết (A'BC) hợp với đáy (ABC) một góc 600 .Tính thể tích lăng trụ. 13 C' B' A' C B A o60 Lời giải: Ta có A 'A (ABC)& BC AB BC A'B^ ^ Þ ^ Vậy ¼ ogóc[(A 'BC),(ABC)] ABA' 60= = 0ABA' AA' AB.tan 60 a 3Þ = =V SABC = 21 aBA.BC 2 2 = Vậy V = SABC.AA' = 3a 3 2 Ví dụ 2: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt (A’BC) tạo với đáy một góc 300 và diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ. x o30 I C' B' A' C B A Giải: ABCV đều AI BCÞ ^ mà AA' (ABC)^ nên A'I BC^ (đl 3^ ). Vậy góc[(A'BC);)ABC)] =¼A'IA = 30o Giả sử BI = x 3 2 32 x x AI ==Þ .Ta có x xAI AIIAAIA 2 3 32 3 2 30cos:':' 0 ====D A’A = AI.tan 300 = xx = 3 3 .3 Vậy VABC.A’B’C’ = CI.AI.A’A = x3 3 Mà SA’BC = BI.A’I = x.2x = 8 2=Þ x Do đó VABC.A’B’C’ = 8 3 Ví dụ 3: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh đáy a và mặt phẳng (BDC') hợp với đáy (ABCD) một góc 60o.Tính thể tích khối hộp chữ nhật. 14 a 060 O A' D' B' C' C A D B Gọi O là tâm của ABCD . Ta có ABCD là hình vuông nênOC BD^ CC'^ (ABCD) nên OC'^BD (đl 3^ ). Vậy góc[(BDC');(ABCD)] = ¼COC' = 60o Ta có V = B.h = SABCD.CC' ABCD là hình vuông nên SABCD = a 2 OCC'V vuông nên CC' = OC.tan60o = a 6 2 Vậy V = 3a 6 2 Ví dụ 4: Cho hình hộp chữ nhật ABCD A'B'C'D' có AA' = 2a ; mặt phẳng (A'BC) hợp với đáy (ABCD) một góc 60o và A'C hợp với đáy (ABCD) một góc 30o .Tính thể tích khối hộp chữ nhật. 2a o 30 o 60 D' C'B' A' D C B A Ta có AA' (ABCD)^ ÞAC là hình chiếu của A'C trên (ABCD) . Vậy góc[A'C,(ABCD)] = ¼ oA 'CA 30= BC ^AB ÞBC ^A'B (đl 3^ ) . Vậy góc[(A'BC),(ABCD)] = ¼ oA 'BA 60= A 'ACÞV AC = AA'.cot30o = 2a 3 A 'ABÞV AB = AA'.cot60o = 2a 3 3 2 2 4a 6ABC BC AC AB 3 Þ = - =V Vậy V = AB.BC.AA' = 316a 2 3 Bài tập tương tự: Bài 1: Cho hộp chữ nhật ABCD A'B'C'D' có AA' = a biết đường chéo A'C hợp với đáy ABCD một góc 30o và mặt (A'BC) hợp với đáy ABCD một góc 600 . Tính thể tích hộp chữ nhật. Đs: 32a 2V 3 = Bài 2: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và cạnh bên bằng a biết rằng mặt (ABC'D') hợp với đáy một góc 30o.Tính thể tích khối lăng trụ. Đs: V = 3a3 Bài 3: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: 3V a 2= Bài 4: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân tại A với AB = AC = a và ¼ oBAC 120= biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: 3a 3V 8 = ook.mathvn.com 15 Bài 5: : Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông tại B và BB' = AB = h biết rằng (B'AC) hợp với đáy ABC một góc 60o. Tính thể tích lăng trụ. Đs: 3h 2V 4 = Bài 6: Cho lăng trụ đứng ABC A'B'C' có đáy ABC đều biết cạnh bên AA' = a Tính thể tích lăng trụ trong các trường hợp sau đây: 1) Mặt phẳng (A'BC) hợp với đáy ABC một góc 60o . 2) A'B hợp với đáy ABC một góc 45o. 3) Chiều cao kẻ từ A' của tam giác A'BC bằng độ dài cạnh đáy của lăng trụ. Đs: 1) 3V a 3= ; 2) V = 3a 3 4 ; V = 3a 3 Bài 7: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh bên AA' = 2a .Tính thể tích lăng trụ trong các trường hợp sau đây: 1) Mặt (ACD') hợp với đáy ABCD một góc 45o . 2) BD' hợp với đáy ABCD một góc 600 . 3) Khoảng cách từ D đến mặt (ACD') bằng a . Đs: 1) V = 16a3 . 2) V = 12a3 .3) V = 316a 3 Bài 8: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a Tính thể tích lăng trụ trong các trường hợp sau đây: 1)Mặt phẳng (BDC') hợp với đáy ABCD một góc 60o . 2)Tam giác BDC' là tam giác đều. 3)AC' hợp với đáy ABCD một góc 450 Đs: 1) 3a 6 2 V = ; 2) V = 3a ; V = 3a 2 Bài 9: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc nhọn A = 60o .Tính thể tích lăng trụ trong các trường hợp sau đây: 1)Mặt phẳng (BDC') hợp với đáy ABCD một góc 60o . 2)Khoảng cách từ C đến (BDC') bằng a 2 3)AC' hợp với đáy ABCD một góc 450 Đs: 1) 33a 3V 4 = ; 2) V = 33a 2 8 ; V = 33a 2 Bài 10: Cho hình hộp chữ nhật ABCD A'B'C'D' có BD' = 5a ,BD = 3a Tính thể tích khối hộp trong các trường hợp sau đây: 1) AB = a 2) BD' hợp với AA'D'D một góc 30o 3) (ABD') hợp với đáy ABCD một góc 300 Đs: 1) 3 2V 8a= ; 2) V = 3 115a ; V = 316a 4) Dạng 4: Khối lăng trụ xiên Ví dụ 1: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác ook.mathvn.com 16 đều cạnh a , biết cạnh bên là a 3 và hợp với đáy ABC một góc 60o . Tính thể tích lăng trụ. H o 60 a B' A' C' C B A Lời giải: Ta có C'H (ABC) CH^ Þ là hình chiếu của CC' trên (ABC) Vậy ¼ ogóc[CC',(ABC)] C'CH 60= = 0 3aCHC' C'H CC'.sin 60 2 Þ = =V SABC = 2 3a 4 = .Vậy V = SABC.C'H = 33a 3 8 Ví dụ 2: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a . Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 . 1) Chứng minh rằng BB'C'C là hình chữ nhật. 2) Tính thể tích lăng trụ . H O o60 C' A a B' A' C B Lời giải: 1) Ta có A 'O (ABC) OA^ Þ là hình chiếu của AA' trên (ABC) Vậy ¼ ogóc[AA',(ABC)] OAA' 60= = Ta có BB'CC' là hình bình hành ( vì mặt bên của lăng trụ) AO BC^ tại trung điểm H của BC nên BC A'H^ (đl 3 ^ ) BC (AA'H) BC AA'Þ ^ Þ ^ mà AA'//BB' nên BC BB'^ .Vậy BB'CC' là hình chữ nhật. 2) ABCV đều nên 2 2 a 3 a 3AO AH 3 3 2 3 = = = oAOA' A'O AOt an60 aÞ = =V Vậy V = SABC.A'O = 3a 3 4 Ví dụ 3: Cho hình hộp ABCD.A’B’C’D’ có đáy là hình chữ nhật với 17 AB = 3 AD = 7 .Hai mặt bên (ABB’A’) và (ADD’A’) lần lượt tạo với đáy những góc 450 và 600. . Tính thể tích khối hộp nếu biết cạnh bên bằng 1. H N M D' C' B' A' D C B A Lời giải: Kẻ A’H )(ABCD^ ,HM ADHNAB ^^ , ADNAABMA ^^Þ ',' (đl 3^ ) ¼ ¼o oA'MH 45 ,A'NH 60Þ = = Đặt A’H = x . Khi đó A’N = x : sin 600 = 3 2x AN = HM x NAAA = - =- 3 43 '' 2 22 Mà HM = x.cot 450 = x Nghĩa là x = 7 3 3 43 2 =Þ - x x Vậy VABCD.A’B’C’D’ = AB.AD.x = 3 3. 7. 3 7 = Bài tập tương tự: Bài 1: Cho lăng trụ ABC A'B'C'có các cạnh đáy là 13;14;15và biết cạnh bên bằng 2a hợp với đáy ABCD một góc 45o . Tính thể tích lăng trụ. Đs: V = 3a 2 Bài 2: Cho lăng trụ ABCD A'B'C'D'có đáy ABCD là hình vuông cạnh a và biết cạnh bên bằng 8 hợp với đáy ABC một góc 30o.Tính thể tích lăng trụ. Đs: V =336 Bài 3: Cho hình hộp ABCD A'B'C'D'có AB =a;AD =b;AA' = c v༠oBAD 30= và biết cạnh bên AA' hợp với đáy ABC một góc 60o.Tính thể tích lăng trụ. Bài 4 : Cho lăng trụ tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a và điểm A' cách đều A,B,C biết AA' = 2a 3 3 .Tính thể tích lăng trụ. Đs: 3a 3V 4 = Bài 5: Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều cạnh a , đỉnh A' có hình chiếu trên (ABC) nằm trên đường cao AH của tam giác ABC biết mặt bêb BB'C'C hợp vớio đáy ABC một góc 60o . 1) Chứng minh rằng BB'C'C là hình chữ nhật. 2) Tính thể tích lăng trụ ABC A'B'C'. Đs: 33a 3V 8 = Bài 6: Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều với tâm O. Cạnh b CC' = a hợp với đáy ABC 1 góc 60o và C' có hình chiếu trên ABC trùng với O . 1) Chứng minh rằng AA'B'B là hình chữ nhật. Tính diện tích AA'B'B. 2) Tính thể tích lăng trụ ABCA'B'C'. Đs: 1) 2a 3S 2 = 2) 33a 3V 8 = 18 Bài 7: Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết chân đường vuông góc hạ từ A' trên ABC trùng với trung điểm của BC và AA' = a. 1) Tìm góc hợp bởi cạnh bên với đáy lăng trụ. 2) Tính thể tích lăng trụ. Đs: 1) 30o 2) 3 3aV 8 = Bài 8: Cho lăng trụ xiên ABC A'B'C' có đáy ABC là tam giác đều với tâm O. Hình chiếu của C' trên (ABC) là O.Tính thể tích của lăng trụ biết rằng khoảng cách từ O đến CC' là a và 2 mặt bên AA'C'Cvà BB'C'C hợp với nhau một góc 90o Đs: 327aV 4 2 = Bài 9: Cho hình hộp ABCD A'B'C'D' có 6 mặt là hình thoi cạnh a,hình chiếu vuông góc của A' trên(ABCD) nằm trong hình thoi,các cạnh xuất phát từ A của hộp đôi một tạo với nhau một góc 60o . 1) Chứng minh rằng H nằm trên đường chéo AC của ABCD. 2) Tính diện tích các mặt chéo ACC'A' và BDD'B'. 3) Tính thể tích của hộp. Đs: 2) 2 2ACC'A' BDD'B'S a 2;S a= = . 3) 3a 2V 2 = Bài 10: Cho hình hộp ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc A = 60o chân đường vuông góc hạ từ B' xuông ABCD trùng với giao điểm 2 đường chéo đáy biết BB' = a. 1)Tìm góc hợp bởi cạnh bên và đáy. 2)Tính thể tích và tổng diện tích các mặt bên của hình hộp. Đs: 1) 60o 2) 3 23aV &S a 15 4 = = LOẠI 2: THỂ TÍCH KHỐI CHÓP 1) Dạng 1: Khối chóp có cạnh bên vuông góc với đáy Ví dụ 1: Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp . _ \ / / a B S C A Lời giải: Ta có (ABC) (SBC) (ASC) (SBC) ìï í ïî ^ ^ AC (SBC)Þ ^ Do đó 2 3 SBC 1 1 a 3 a 3V S .AC a 3 3 4 12 = = = 19 Ví dụ 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. 1) Chứng minh các mặt bên là tam g

File đính kèm:

  • pdfPhuongphap- lambaitap-thetich-khoidadien.pdf