Chương XI: Nhận dạng tam giác
CHƯƠNG XI: NHẬN DẠNG TAM GIÁC
I. TÍNH CÁC GÓC CỦA TAM GIÁC
Bài 201: Tính các góc của ΔABC nếu :
Bạn đang xem nội dung tài liệu Chương XI: Nhận dạng tam giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG XI: NHẬN DẠNG TAM GIÁC
I. TÍNH CÁC GÓC CỦA TAM GIÁC
Bài 201: Tính các góc của ABCΔ nếu :
( ) ( ) ( ) ( )3sin B C sin C A cos A B *
2
+ + + + + =
Do A B C+ + = π
Nên: ( ) 3* sin A sinB cosC
2
⇔ + − =
+ − ⎛ ⎞⇔ − ⎜ ⎟⎝ ⎠
−⇔ − =
−⇔ − + =
− −⎛ ⎞
− =
⇔ − + −⎜ ⎟⎝ ⎠
− −⎛ ⎞⇔ − + =⎜ ⎟⎝ ⎠
−⎧ =⎪⎪⇔ ⎨ −⎪ =⎪⎩
= =
⇔
2
2
2
2
2
2
2
=
A B A B C 32sin cos 2 cos 1
2 2 2
C A B C 12cos cos 2 cos
2 2 2 2
C C A B4 cos 4 cos cos 1 0
2 2 2
C A B A B2cos cos 1 cos 0
2 2 2
C A B A B2cos cos sin 0
2 2 2
C A B2cos cos
2 2
A Bsin 0
2
C2cos cos 0 1
2
A
2
⎧ π⎧⎪ =⎪ ⎪⇔⎨ ⎨−⎪ ⎪ == ⎩⎪⎩
π⎧ = =⎪⎪⇔ ⎨ π⎪ =⎪⎩
C
2 3
B A B0
2
A B
6
2C
3
Bài 202: Tính các góc của ABCΔ biết:
( ) 5cos2A 3 cos2B cos2C 0 (*)
2
+ + + =
Ta có: ( ) ( ) ( )2 5* 2cos A 1 2 3 cos B C cos B C
2
0⇔ − + + − + =⎡ ⎤⎣ ⎦
( )
( ) ( )
( ) ( )
( )
( )
⇔ − − + =
⎡ ⎤⇔ − − + − −⎣ ⎦
⎡ ⎤⇔ − − + − =⎣ ⎦
− =⎧ − =⎧⎪ ⎪⇔ ⇔⎨ ⎨ == −⎪ ⎪⎩⎩
⎧ =⎪⇔ ⎨ = =⎪⎩
2
2 2
2 2
0
0
4 cos A 4 3 cos A.cos B C 3 0
2cos A 3 cos B C 3 3cos B C 0
2cos A 3 cos B C 3sin B C 0
sin B C 0 B C 0
33 cos Acos A cos B C
22
A 30
B C 75
=
Bài 203: Chứng minh ABCΔ có nếu : 0C 120=
A B Csin A sinB sinC 2sin sin 2sin (*)
2 2 2
+ + − ⋅ =
Ta có
A B A B C C A B C(*) 2sin cos 2sin cos 2sin sin 2sin
2 2 2 2 2 2
C A B C C A B A2cos cos 2sin cos 2cos 2sin sin
2 2 2 2 2 2
C A B C A Bcos cos sin cos cos
2 2 2 2 2
C A B A B A Bcos cos cos cos cos
2 2 2 2 2
C A B A B2cos cos cos cos cos
2 2 2 2 2
+ −⇔ + =
− +⇔ + = +
−⎛ ⎞⇔ + = ⋅⎜ ⎟⎝ ⎠
− +⎡ ⎤⇔ + =⎢ ⎥⎣ ⎦
⇔ =
2
B
2
+
C 1cos
2 2
⇔ = (do Acos 0
2
> và Bcos 0
2
> vì A B0 ;
2 2 2
π< < )
⇔ = 0C 120
Bài 204: Tính các góc của CΔΑΒ biết số đo 3 góc tạo cấp số cộng và
3 3sin A sinB sinC
2
++ + =
Không làm mất tính chất tổng quát của bài toán giả sử A B C< <
Ta có: A, B, C tạo 1 cấp số cộng nên A + C = 2B
Mà A B C+ + = π nên B
3
π=
Lúc đó: 3 3sin A sinB sinC
2
++ + =
3 3sin A sin sinC
3 2
3sin A sinC
2
A C A C 32sin cos
2 2 2
B A C 32cos cos
2 2 2
3 A C 32. cos
2 2 2
C A 3cos cos
2 2 6
π +⇔ + + =
⇔ + =
+ −⇔ =
−⇔ =
⎛ ⎞ −⇔ =⎜ ⎟⎜ ⎟⎝ ⎠
− π⇔ = =
Do C > A nên có: CΔΑΒ
− π π⎧ ⎧= =⎪ ⎪⎪ ⎪π π⎪ ⎪+ = ⇔ =⎨ ⎨⎪ ⎪π π⎪ ⎪= =⎪ ⎪⎩⎩
C A C
2 6 2
2C A A
3 6
B B
3 3
Bài 205: Tính các góc của ABCΔ nếu
( )
( )
⎧ + ≤⎪⎨ + + = +⎪⎩
2 2 2b c a 1
sin A sin B sin C 1 2 2
Áp dụng định lý hàm cosin:
2 2b c acosA
2bc
+ −=
2
2
Do (1): nên co2 2b c a+ ≤ sA 0≤
Do đó: AA
2 4
π π≤ < π ⇔ ≤ <
2 2
π
Vậy ( )A 2cos cos
2 4 2
π≤ = ∗
Mặt khác: sin A sinB sinC+ + B C B Csin A 2sin cos
2 2
+ −= +
A B Csin A 2cos cos
2 2
−= +
21 2 1
2
⎛ ⎞≤ + ⋅⎜ ⎟⎜ ⎟⎝ ⎠
( ) −⎛ ⎞≤⎜ ⎟⎝ ⎠
B Cdo * và cos 1
2
Mà sin A sinB sinC 1 2 do (2)+ + = +
Dấu “=” tại (2) xảy ra
⎧ =⎪⎪⎪⇔ =⎨⎪ −⎪ =⎪⎩
sin A 1
A 2cos
2 2
B Ccos 1
2
π⎧ =⎪⎪⇔ ⎨ π⎪ = =⎪⎩
A
2
B C
4
Bài 206: (Đề thi tuyển sinh Đại học khối A, năm 2004)
Cho ABCΔ không tù thỏa điều kiện
( )cos2A 2 2 cosB 2 2 cosC 3 *+ + =
Tính ba góc của ABCΔ
* Cách 1: Đặt M = cos2A 2 2 cosB 2 2 cosC 3+ + −
Ta có: M = 2 B C B C2cos A 4 2 cos cos 4
2 2
+ −+ −
⇔ M = 2 A B C2cos A 4 2 sin cos 4
2 2
−+ −
Do Asin 0
2
> và B - Ccos 1
2
≤
Nên 2 AM 2cos A 4 2 sin 4
2
≤ + −
Mặt khác: ABCΔ không tù nên 0 A
2
π< ≤
⇒ ≤ ≤
⇒ ≤2
0 cos A 1
cos A cos A
Do đó: AM 2cosA 4 2 sin 4
2
≤ + −
2
2
2
A AM 1 2sin 4 2 sin
2 2
A AM 4sin 4 2 sin 2
2 2
AM 2 2 sin 1 0
2
⎛ ⎞⇔ ≤ − + −⎜ ⎟⎝ ⎠
⇔ ≤ − + −
⎛ ⎞⇔ ≤ − − ≤⎜ ⎟⎝ ⎠
4
Do giả thiết (*) ta có M=0
Vậy:
2
0
0
cos A cosA
A 90B Ccos 1
2 B C 45
A 1sin
2 2
⎧⎪ =⎪ ⎧ =−⎪ ⎪= ⇔⎨ ⎨ = =⎪⎩⎪⎪ =⎪⎩
* Cách 2: ( )* cos2A 2 2 cosB 2 2 cosC 3 0⇔ + + − =
( )
( )
( )
( )
2
2
2
2
2
2
2
B C B Ccos A 2 2 cos cos 2 0
2 2
A B Ccos A cosA cosA 2 2 sin cos 2 0
2 2
A A B CcosA cosA 1 1 2sin 2 2 sin cos 2 0
2 2 2
A B C B CcosA cosA 1 2 sin cos 1 cos 0
2 2 2
A B C BcosA cosA 1 2 sin cos sin
2 2
+ −⇔ + − =
−⇔ − + + − =
−⎛ ⎞⇔ − + − + −⎜ ⎟⎝ ⎠
− −⎛ ⎞ ⎛⇔ − − − − −⎜ ⎟ ⎜⎝ ⎠ ⎝
− −⎛ ⎞⇔ − − − −⎜ ⎟⎝ ⎠
=
⎞ =⎟⎠
C 0 (*)
2
=
Do ABCΔ không tù nên và cocos A 0≥ sA 1 0− <
Vậy vế trái của (*) luôn ≤ 0
Dấu “=” xảy ra
cosA 0
A B C2 sin cos
2 2
B Csin 0
2
⎧⎪ =⎪ −⎪⇔ =⎨⎪ −⎪ =⎪⎩
⎧ =⎪⇔ ⎨ = =⎪⎩
0
0
A 90
B C 45
Bài 207: Chứng minh ABCΔ có ít nhất 1 góc 600 khi và chỉ khi
sin A sinB sinC 3 (*)
cosA cosB cosC
+ + =+ +
Ta có:
( ) ( ) ( )(*) sin A 3 cosA sinB 3 cosB sinC 3 cosC 0⇔ − + − + − =
sin A sin B sin C 0
3 3 3
A B A B2sin cos sin C 0
2 3 2 3
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇔ − + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ π − π⎛ ⎞ ⎛⇔ − + −⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞ =⎟⎠
C A B C C2sin cos 2sin cos 0
2 2 3 2 2 6 2 6
C A B C2sin cos cos 0
2 6 2 2 6
⎡ π π⎤ − π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇔ − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
π ⎡ − π ⎤⎛ ⎞ ⎛ ⎞⇔ − − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
=
π − π π⎛ ⎞ ⎛ ⎞ ⎛⇔ − = ∨ = − = −⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝
C A B Csin 0 cos cos cos
2 6 2 2 6 3 2
+ ⎞⎟⎠
A B
π − π + − + π +⇔ = ∨ = − ∨ = −C A B A B A B A
2 6 2 3 2 2 3 2
B
π π⇔ = ∨ = ∨ =C A B
3 3
π
3
Bài 208: Cho ABCΔ và V = cos2A + cos2B + cos2C – 1. Chứng minh:
a/ Nếu V = 0 thì ABCΔ có một góc vuông
b/ Nếu V < 0 thì ABCΔ có ba góc nhọn
c/ Nếu V > 0 thì ABCΔ có một góc tù
Ta có: ( ) ( ) 21 1V 1 cos2A 1 cos2B cos 1
2 2
= + + + + −
( )
( ) ( )
( )
( ) (
2
2
2
1V cos2A cos2B cos C
2
)
V cos A B .cos A B cos C
V cosC.cos A B cos C
V cosC cos A B cos A B
V 2cosCcosA cosB
⇔ = + +
⇔ = + − +
⇔ = − − +
⇔ = − − + +⎡ ⎤⎣ ⎦
⇔ = −
Do đó:
a / V 0 cosA 0 cosB 0 cosC 0= ⇔ = ∨ = ∨ =
⇔ ABCΔ ⊥ tại A hay ABCΔ ⊥ tại B hay ABCΔ ⊥ tại C
b / V 0 cosA.cosB.cosC 0
⇔ ABCΔ có ba góc nhọn
( vì trong 1 tam giác không thể có nhiều hơn 1 góc tù nên
không có trường hợp có 2 cos cùng âm )
c / V 0 cosA.cosB.cosC 0> ⇔ <
cosA 0 cosB 0 cosC 0⇔ < ∨ < ∨ <
⇔ ABCΔ có 1 góc tù.
II. TAM GIÁC VUÔNG
Bài 209: Cho ABCΔ có +=B a ccotg
2 b
Chứng minh ABCΔ vuông
Ta có: B a ccotg
2 b
+=
+ +⇔ = =
Bcos 2R sin A 2R sinC sin A sinC2
B 2R sin B sin Bsin
2
+ −
⇔ =
B A C Acos 2sin .cos
2 2
B Bsin 2sin .cos
2 2
C
2
B
2
−⇔ = >2 B B A C Bcos cos . cos (do sin 0)
2 2 2 2
−⇔ = >B A C Bcos cos (do cos 0)
2 2 2
− −⇔ = ∨ =
⇔ = + ∨ = +
B A C B C A
2 2 2 2
A B C C A B
π π⇔ = ∨ =
⇔ Δ Δ
A C
2 2
ABC vuông tại A hay ABC vuông tại C
Bài 210: Chứng minh ABCΔ vuông tại A nếu
b c a
cosB cosC sinBsinC
+ =
Ta có: b c a
cosB cosC sinBsinC
+ =
⇔ + =
+⇔ =
2RsinB 2RsinC 2Rsin A
cosB cosC sinBsinC
sinBcosC sinCcosB sin A
cosB.cosC sinBsinC
( )+⇔ =
⇔ =
sin B C sin A
cosB.cosC sinBsinC
cosBcosC sinBsinC (do sin A 0)>
( )
⇔ −
⇔ + =
π⇔ + =
⇔ Δ
cosB.cosC sin B.sinC 0
cos B C 0
B C
2
ABC vuông tại A
=
Bài 211: Cho ABCΔ có:
A B C A B C 1cos cos cos sin sin sin (*)
2 2 2 2 2 2 2
⋅ ⋅ − ⋅ ⋅ =
Chứng minh ABCΔ vuông
Ta có:
⇔ = +
+ − + −⎡ ⎤ ⎡⇔ + = − −⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤⎥⎦
A B C 1 A B C(*) cos cos cos sin sin sin
2 2 2 2 2 2 2
1 A B A B C 1 1 A B A Bcos cos cos cos cos sin
2 2 2 2 2 2 2 2
C
2
− −⎡ ⎤ ⎡ ⎤⇔ + = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− −⇔ + = − + = − +2 2
C A B C C A B Csin cos cos 1 sin cos sin
2 2 2 2 2 2
C C A B C C C C A Bsin cos cos cos 1 sin cos 1 sin cos sin
2 2 2 2 2 2 2 2
C
2
− −⇔ + = +2C C A B C C A B Csin cos cos cos cos cos sin
2 2 2 2 2 2 2
−⎡ ⎤ ⎡ ⎤⇔ − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤⇔ − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
C C C A B C Ccos sin cos cos sin cos
2 2 2 2 2 2
C C C A Bsin cos cos cos 0
2 2 2 2
−⇔ = ∨ =
− −⇔ = ∨ = ∨ =
π⇔ = ∨ = + ∨ = +
π π π⇔ = ∨ = ∨ =
C C C Asin cos cos cos
2 2 2 2
C C A B C Btg 1
2 2 2 2 2
C A B C B A C
2 4
C A B
2 2 2
B
A
Bài 212: Chứng minh ABCΔ vuông nếu:
3(cosB 2sinC) 4(sinB 2cosC) 15+ + + =
Do bất đẳng thức Bunhiacốpki ta có:
2 23cosB 4sinB 9 16 cos B sin B 15+ ≤ + + =
và 2 26sinC 8cosC 36 64 sin C cos C 10+ ≤ + + =
nên: 3(cosB 2sinC) 4(sinB 2cosC) 15+ + + ≤
Dấu “=” xảy ra
cosB sinB 4tgB
3 4
sinC cosC 4cotgC=
6 8
⎧ ⎧= =⎪ ⎪⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪=⎪ ⎪⎩ ⎩
3
3
⇔ =
π⇔ + =
tgB cotgC
B C
2
ABC⇔ Δ vuông tại A.
Bài 213: Cho ABCΔ có: sin2A sin2B 4sin A.sinB+ =
Chứng minh ABCΔ vuông.
Ta có: + =sin2A sin2B 4sin A.sinB
[ ]
[ ]
⇔ + − = − + − −
⇔ + = − + −
2sin(A B) cos(A B) 2 cos(A B) cos(A B)
cos(A B) 1 sin(A B) cos(A B)
[ ]⇔ − = − −cosC 1 sinC cos(A B)
⇔ − + = − −2cosC(1 sinC) (1 sin C).cos(A B)
⇔ − + = −2cosC(1 sinC) cos C.cos(A B)
⇔ = − + = −cosC 0 hay (1 sin C) cosC.cos(A B) (*)
⇔ =cosC 0
( Do nên sinC 0> (1 sinC) 1− + < −
Mà .Vậy (*) vô nghiệm.) cosC.cos(A B) 1− ≥ −
Do đó ABCΔ vuông tại C
III. TAM GIÁC CÂN
Bài 214:Chứng minh nếu ABCΔ có CtgA tgB 2cotg
2
+ =
thì là tam giác cân.
Ta có: CtgA tgB 2cotg
2
+ =
C2cossin(A B) 2
CcosA.cosB sin
2
C2cossinC 2
CcosA.cosB sin
2
C C C2sin cos 2cos
2 2
CcosA cosB sin
2
+⇔ =
⇔ =
⇔ = 2
⇔ 2 C Csin cosA.cosB docos 0
2 2
⎛ ⎞= >⎜ ⎟⎝ ⎠
( ) ( ) (
( )
( )
⇔ − = + + −⎡ ⎤⎣ ⎦
⇔ − = − + −
⇔ − =
⇔ =
1 11 cosC cos A B cos A B
2 2
1 cosC cosC cos A B
cos A B 1
)
A B
ABC⇔ Δ cân tại C.
Bài 215: Chứng minh ABCΔ cân nếu:
3 3A B Bsin .cos sin .cos
2 2 2 2
= A
Ta có: 3 3A B Bsin .cos sin .cos
2 2 2 2
= A
2 2
A Bsin sin1 12 2
A A B Bcos cos cos cos
2 2 2 2
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⇔ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(do Acos
2
> 0 và Bcos
2
>0 )
2 2
3 3
2 2
A A B Btg 1 tg tg 1 tg
2 2 2 2
A B A Btg tg tg tg 0
2 2 2 2
A B A B A Btg tg 1 tg tg tg .tg 0 (*)
2 2 2 2 2 2
⎛ ⎞ ⎛ ⎞⇔ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⇔ − + − =
⎛ ⎞ ⎡ ⎤⇔ − + + + =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
⇔ =A Btg tg
2 2
( vì 2 2A B A B1 tg tg tg tg 0
2 2 2 2
+ + + > )
⇔ =A B
ABC⇔ Δ cân tại C
Bài 216: Chứng minh ABCΔ cân nếu:
( )2 2 2 22 2cos A cos B 1 cotg A cotg B (*)sin A sin B 2+ = ++
Ta có:
(*)
2 2
2 2 2 2
cos A cos B 1 1 1 2
sin A sin B 2 sin A sin B
+ ⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠−
2 2
2 2 2 2
cos A cos B 1 1 11
sin A sin B 2 sin A sin B
+ ⎛ ⎞⇔ + = +⎜ ⎟+ ⎝ ⎠
⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠2 2 2 2
2 1 1 1
2sin A sin B sin A sin B
( )⇔ = + 22 2 2 24 sin A sin B sin A sin B
( )2 20 sin A sin B
sin A sinB
⇔ = −
⇔ =
Vậy ABCΔ cân tại C
Bài 217: Chứng minh ABCΔ cân nếu:
( )Ca b tg atgA btgB (*)
2
+ = +
Ta có: ( )Ca b tg atgA btgB
2
+ = +
( )⇔ + = +Ca b cotg atgA btgB
2
⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣
C Ca tgA cotg b tgB cotg 0
2 2
⎤ =⎥⎦
+ +⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤ =⎥⎦
A B Aa tgA tg b tgB tg 0
2 2
B
− −
⇔ ++ + =
A B B Aa sin bsin
2 2 0A B A Bcos A.cos cosB.cos
2 2
−⇔ = − =A B a bsin 0 hay 0
2 cos A cosB
⇔ = =2R sin A 2R sin BA B hay
cos A cosB
⇔ = = ⇔ ΔA B hay tgA tgB ABC cân tại C
IV. NHẬN DẠNG TAM GIÁC
Bài 218: Cho ABCΔ thỏa: a cosB bcos A a sin A bsinB (*)− = −
Chứng minh ABCΔ vuông hay cân
Do định lý hàm sin: a 2Rsin A, b 2R sinB= =
Nên (*) ( )2 22R sin A cosB 2RsinBcos A 2R sin A sin B⇔ − = −
( ) ( ) ( )
( ) [ ]
( ) ( ) ( )
( ) ( )
( ) ( )
2 2sin A cosB sinBcosA sin A sin B
1 1sin A B 1 cos2A 1 cos2B
2 2
1sin A B cos2B cos2A
2
sin A B sin A B sin B A
sin A B 1 sin A B 0
sin A B 0 sin A B 1
A B A B
2
⇔ − = −
⇔ − = − − −
⇔ − = −
⇔ − = − + −⎡ ⎤⎣ ⎦
⇔ − − + =⎡ ⎤⎣ ⎦
⇔ − = ∨ + =
π⇔ = ∨ + =
vậy ABCΔ vuông hay cân tại C
Cách khác
( )
− = −
⇔ − = + −
2 2sin A cosB sin Bcos A sin A sin B
sin A B (sin A sin B) ( sin A sin B)
( ) + − + −⇔ − = A B A B A B A Bsin A B ( 2sin cos ) (2 cos sin )
2 2 2 2
( ) ( ) ( )
( ) ( )
⇔ − = + −
⇔ − = ∨ + =
π⇔ = ∨ + =
sin A B sin A B sin A B
sin A B 0 sin A B 1
A B A B
2
Bài 219 ABCΔ là tam giác gì nếu
( ) ( ) ( ) ( )2 2 2 2a b sin A B a b sin A B (*+ − = − + )
Ta có: (*) ( ) ( ) ( ) ( )2 2 2 2 2 2 24R sin A 4R sin B sin A B 4R sin A sin B sin A B⇔ + − = − +
( ) ( ) ( ) ( )2 2sin A sin A B sin A B sin B sin A B sin A B 0⇔ − − + + − + +⎡ ⎤ ⎡⎣ ⎦ ⎣ =⎤⎦
=
( )2 22sin A cosA sin B 2sin Bsin A cosB 0⇔ − +
sin A cosA sinBcosB 0⇔ − + = (do và si ) sin A 0> nB 0>
sin2A sin2B
2A 2B 2A 2B
A B A B
2
⇔ =
⇔ = ∨ = π −
π⇔ = ∨ + =
Vậy ABCΔ cân tại C hay ABCΔ vuông tại C.
Bài 220: ABCΔ là tam giác gì nếu:
2 2a sin2B b sin2A 4abcosA sinB (1)
sin2A sin2B 4sin A sinB (2)
⎧ + =⎨ + =⎩
Ta có:
(1) 2 2 2 2 2 24R sin A sin 2B 4R sin Bsin 2A 16R sin A sin Bcos A⇔ + =
( )
2 2 2
2 2
sin A sin2B sin Bsin2A 4sin A sin BcosA
2sin A sinBcosB 2sin A cosA sin B 4sin A sin BcosA
sin A cosB sinBcosA 2sinBcosA (dosin A 0,sinB 0)
sin A cosB sinBcosA 0
sin A B 0
A B
⇔ + =
⇔ + =
⇔ + = >
⇔ − =
⇔ − =
⇔ =
2
>
Thay vào (2) ta được
2sin 2A 2sin A=
( )
22sin A cosA 2sin A
cosA sin A dosin A 0
tgA 1
A
4
⇔ =
⇔ = >
⇔ =
π⇔ =
Do đó ABCΔ vuông cân tại C
V. TAM GIÁC ĐỀU
Bài 221: Chứng minh ABCΔ đều nếu:
( )bc 3 R 2 b c a (*)= + −⎡ ⎤⎣ ⎦
Ta có:(*) ( ) ( ) ( )2RsinB 2RsinC 3 R 2 2Rsin B 2RsinC 2Rsin A⇔ = + −⎡ ⎤⎣ ⎦
( ) ( )⇔ = + −2 3 sin Bsin C 2 sin B sin C sin B C+
( )⇔ = + − −2 3 sin BsinC 2 sin B sinC sin BcosC sinCcosB
⎡ ⎤ ⎡⇔ − − + − −⎢ ⎥ ⎢⎣ ⎦ ⎣
1 3 1 32sin B 1 cosC sin C 2sin C 1 cosB sin B 0
2 2 2 2
⎤ =⎥⎦
⎡ π ⎤ ⎡ π ⎤⎛ ⎞ ⎛ ⎞⇔ − − + − − =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦sin B 1 cos C sin C 1 cos B 0 (1)3 3
Do và sinB 0> 1 cos C 0
3
π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥
sin và C 0> 1 cos B 0
3
π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥
Nên vế trái của (1) luôn 0≥
Do đó, (1)
cos C 1
3
cos B 1
3
⎧ π⎛ ⎞− =⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ − =⎜ ⎟⎪ ⎝ ⎠⎩
C B
3
π⇔ = = ⇔ ABCΔ đều.
Bài 222: Chứng minh ABCΔ đều nếu 3 3 3
2
3sinBsinC (1)
4
a b ca (
a b c
⎧ =⎪⎪⎨ − −⎪ =⎪ − −⎩ 2)
Ta có: (2) 3 2 2 3 3a a b a c a b c⇔ − − = − − 3
( )2 3a b c b c⇔ + = + 3
( ) ( ) ( )2 2
2 2 2
a b c b c b bc c
a b bc c
⇔ + = + − +
⇔ = − +
2
c
(do đl hàm cosin) 2 2 2 2b c 2bc cos A b c b⇔ + − = + −
⇔ =
π⇔ = ⇔ =
2bc cos A bc
1cos A A
2 3
Ta có: (1) 4sinBsinC 3⇔ =
( ) ( )⇔ − − +⎡ ⎤⎣ ⎦2 cos B C cos B C 3=
( )⇔ − +⎡ ⎤⎣ ⎦2 cos B C cos A 3=
( ) π⎛ ⎞ ⎛ ⎞⇔ − + = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
12cos B C 2 3 do (1) ta có A
2 3
( )⇔ − = ⇔ =cos B C 1 B C
Vậy từ (1), (2) ta có ABCΔ đều
Bài 223: Chứng minh ABCΔ đều nếu:
sin A sinB sinC sin2A sin2B sin2C+ + = + +
Ta có: ( ) ( )sin2A sin2B 2sin A B cos A B+ = + −
( )2sinCcos A B 2sinC (1)= − ≤
Dấu “=” xảy ra khi: ( )cos A B 1− =
Tương tự: sin2A sin2C 2sinB+ ≤ (2)
Dấu “=” xảy ra khi: ( )cos A C 1− =
Tương tự: sin2B sin2C 2sin A+ ≤ (3)
Dấu “=” xảy ra khi: ( )cos B C 1− =
Từ (1) (2) (3) ta có: ( ) ( )2 sin2A sin2B sin2C 2 sinC sinB sinA+ + ≤ + +
Dấu “=” xảy ra
( )
( )
( )
− =⎧⎪⇔ − =⎨⎪ − =⎩
cos A B 1
cos A C 1
cos B C 1
A⇔ = =B C
⇔ ABCΔ đều
Bài 224: Cho ABCΔ có:
2 2 2
1 1 1 1 (*)
sin 2A sin 2B sin C 2cosA cosBcosC
+ + =
Chứng minh ABCΔ đều
Ta có: (*) ⇔ + +2 2 2 2 2 2sin 2B.sin 2C sin 2Asin 2C sin 2Asin 2B
( )
( )
sin2A.sin2B.sin2C sin2A sin 2Bsin2C
2cosA cosBcosC
4sin A sinBsinC sin2A sin2Bsin2C
= ⋅
=
Mà: ( ) ( ) (= − − +⎡ ⎤⎣ ⎦4 sin A sin Bsin C 2 cos A B cos A B sin A B)+
)+
( )
( ) (
= − +⎡ ⎤⎣ ⎦
= + −
= + +
2 cos A B cosC sin C
2sinC cosC 2cos A B sin A B
sin 2C sin 2A sin 2B
Do đó,với điều kiện ABCΔ không vuông ta có
(*) 2 2 2 2 2 2sin 2Bsin 2C sin 2A sin 2C sin 2A sin 2B⇔ + +
( )
( ) ( )
= + +
= + +
⇔ − + −
2 2 2
2 2
sin 2A.sin 2B.sin 2C sin 2A sin 2B sin 2C
sin 2A sin 2Bsin 2C sin 2Bsin 2A sin 2C sin 2Csin 2A sin 2B
1 1sin 2Bsin 2A sin 2Bsin 2C sin 2A sin 2B sin 2A sin 2C
2 2
( )21 sin2Csin2A sin2Csin2B 0
2
+ − =
sin2Bsin2A sin2Bsin2C
sin2A sin2B sin2A sin2C
sin2A sin2C sin2Csin2B
=⎧⎪⇔ =⎨⎪ =⎩
=⎧⇔ ⎨ =⎩
sin 2A sin 2B
sin 2B sin 2C
A B C⇔ = = ABC⇔ đều
Bài 225: Chứng minh ABCΔ đều nếu:
a cosA bcosB c cosC 2p (*)
a sinB bsinC csin A 9R
+ + =+ +
Ta có: a cosA bcosB ccosC+ +
( )
( ) ( )
( ) ( )
2Rsin A cosA 2RsinBcosB 2RsinCcosC
R sin2A sin2B sin2C
R 2sin A B cos A B 2sinCcosC
2RsinC cos A B cos A B 4RsinCsin A sinB
= + +
= + +
⎡ ⎤= + − +⎣ ⎦
⎡ ⎤= − − + =⎣ ⎦
Cách 1: asinB bsinC csin A+ +
( )
( )2 2 23
2R sin A sinB sinBsinC sinCsin A
2R sin A sin Bsin C do bđtCauchy
= + +
≥
Do đó vế trái : 3a cosA bcosB c cosC 2 sin A sinBsinC
a sinB bsinC csin A 3
+ + ≤+ + (1)
Mà vế phải: ( )+ += = + +2p a b c 2 sin A sin B sin C
9R 9R 9
32 sin A sinBsinC
3
≥ (2)
Từ (1) và (2) ta có
( * ) đều sin A sinB sinC ABC⇔ = = ⇔ Δ
Cách 2: Ta có: (*) 4Rsin A sinBsinC a b c
a sinB bsinC csin A 9R
+ +⇔ =+ +
a b c4R
a b c2R 2R 2R
b c ca 9Ra b
2R 2R 2R
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⇔ =⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
( ) ( )9abc a b c ab bc ca⇔ = + + + +
Do bất đẳng thức Cauchy ta có
3
2 2 23
a b c abc
ab bc ca a b c
+ + ≥
+ + ≥
Do đó: ( ) ( )a b c ab bc ca 9abc+ + + + ≥
Dấu = xảy ra a b c⇔ = = ABC⇔ Δ đều.
Bài 226: Chứng minh ABCΔ đều nếu
A ( )B Ccot gA cot gB cot gC tg tg tg *
2 2 2
+ + = + +
Ta có:
( )sin A B sinCcot gA cot gB
sin A sinB sin A sinB
++ = =
2
sinC
sin A sinB
2
≥ +⎛ ⎞⎜ ⎟⎝ ⎠
(do bđt Cauchy)
2 2 2
C C C2sin cos 2sin
2 2 2
A B A B C Asin .cos cos cos
2 2 2
= = B
2
+ − −
C2tg
2
≥ (1)
Tương tự: Bcot gA cot gC 2tg
2
+ ≥ (2)
Acot gB cot gC 2tg
2
+ ≥ (3)
Từ (1) (2) (3) ta có
( ) A B C2 cot gA cot gB cot gC 2 tg tg tg
2 2 2
⎛ ⎞+ + ≥ + +⎜ ⎟⎝ ⎠
Do đó dấu “=” tại (*) xảy ra
− − −⎧ = =⎪⇔ ⎨⎪ = =⎩
=A B A C B Ccos cos cos 1
2 2 2
sin A sin B sin C
A B C
ABC đều.
⇔ = =
⇔ Δ
BÀI TẬP
1. Tính các góc của ABCΔ biết:
a/ = + − 3cos A sin B sin C
2
(ĐS: 2B C ,A
6 3
π π= = = )
b/ si (ĐS: n6A sin6B sin6C 0+ + = A B C
3
π= = = )
c/ si n5A sin5B sin5C 0+ + =
2. Tính góc C của ABCΔ biết:
a/ ( ) ( )1 cot gA 1 cot gB 2+ + =
b/
2 2 9
A,Bnhọn
sin A sin B sinC
⎧⎪⎨ + =⎪⎩
3. Cho ABCΔ có: ⎧ + + <⎨ + + =⎩
2 2 2cos A cos B cos C 1
sin 5A sin 5B sin 5C 0
Chứng minh Δ có ít nhất một góc 36 0.
4. Biết . Chứng minh 2 2 2sin A sin B sin C m+ + =
a/ m thì 2= ABCΔ vuông
b/ m thì 2> ABCΔ nhọn
c/ m thì 2< ABCΔ tù.
5. Chứng minh ABCΔ vuông nếu:
a/ b ccosB cosC
a
++ =
b/ b c a
cosB cosC sinBsinC
+ =
c/ s in A sinB sinC 1 cosA cosB cosC+ + = − + +
d/
( ) ( )2
2
2 1 cos B Cb c
b 1 cos2B
⎡ ⎤− −− ⎣ ⎦= −
6. Chứng minh ABCΔ cân nếu:
a/
2 2
1 cosB 2a c
sinB a c
+ += −
b/ + + =+ −
sin A sin B sin C A Bcot g .cot g
sin A sin B sin C 2 2
c/ 2tgA 2tgB tgA.tg B+ =
d/ C Ca cot g tgA b tgB cot g
2 2
⎛ ⎞ ⎛− = −⎜ ⎟ ⎜⎝ ⎠ ⎝
⎞⎟⎠
e/ ( ) C Bp b cot g ptg
2 2
− =
f/ ( )Ca b tg atgA btgB
2
+ = +
7. ABCΔ là Δ gì nếu:
a/ ( ) A BatgB btgA a b tg
2
++ = +
b/ c c cos2B bsin2B= +
c/ + +sin 3A sin 3B sin 3C 0=
d/ ( ) ( )4S a b c a c b= + − + −
8. Chứng minh ABCΔ đều nếu
a/ ( )2 a cosA bcosB ccosC a b c+ + = + +
b/ ( )= + +2 3 3 33S 2R sin A sin B sin C
c/ si n A sinB sinC 4sin AsinBsinC+ + =
d/ a b c
9Rm m m
2
+ + = với là 3 đường trung tuyến a bm ,m ,mc
Th.S Phạm Hồng Danh – TT luyện thi Vĩnh Viễn
File đính kèm:
- Luonggiac-Chuong11.pdf