Bài giảng môn Toán lớp 7 - Tiết 24: Trường hợp bằng nhau thứ hai của tam giác cạnh - Góc - cạnh (tiết 1)
Khi nào ta có thể khẳng định được ∆ABC = ∆A’B’C’
Nếu đã có ∆ABC = ∆A’B’C’ thì ta có thể suy ra những
yếu tố nào của hai tam giác đó bằng nhau
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng môn Toán lớp 7 - Tiết 24: Trường hợp bằng nhau thứ hai của tam giác cạnh - Góc - cạnh (tiết 1), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
*Kiểm tra bài cũKhi nào ta có thể khẳng định được ∆ABC = ∆A’B’C’Khi ∆ABC và ∆A’B’C’ cóAB = A’B’BC = B’C’AC = A’C’Nếu đã có ∆ABC = ∆A’B’C’ thì ta có thể suy ra những yếu tố nào của hai tam giác đó bằng nhau AB = A'B' ; AC = A'C' ; BC = B'C'Nếu ∆ABC = ∆A’B’C’ thì*A = a’;b = b’;c = c’ABCMNP** Kh«ng ®o c¸c ®é dµi AC vµ A’C’. VËy ABC vµ A’B’C’ cã b»ng nhau kh«ng?Hai học sinh lên bảng .Dưới lớp hoạt động nhómNhãm 1,3. Nhãm 2,4. a, Vẽ ABC và A'B'C‘:- vµo nh¸p. -vào hai tờ giÊy mµu khác nhaub. Cắt và chồng c¸c ®Ønh t¬ng øng A vµ A’; B vµ B’; C vµ C’ ?C, Nhận xét về ABC và A'B'C' ?b. Đo và so sánh các đoạn thẳng AC và A’C’Bài cho:Kết quả đoAC=A’C’? ABC = A'B'C‘:- VÏ tam gi¸c ABC biÕt AB = 2cm, BC = 3cm ; - VÏ tam gi¸c A’B’C’biÕt A’B’ = 2cm, B’C’ = 3cm ; *-VÏ gãc xBy= 700-Trªn tia Bx lÊy ®iÓm A sao cho BA=2cm-Trªn tia By lÊy ®iÓm C sao cho BC=3cm- Nèi A vµ C ta ®îc tam gi¸c ABCx By3cm 2cmAC7003cm B’ 2cm A’C’700VÏ thªm A’B’C’ cã: A’B’=2cm, B = 700, B’C’= 3cm.1. Vẽ tam giác biết hai cạnh và góc xen giữa*700 B 2cmAC3cm700 B’ 2cm A’C’3cmKiÓm nghiÖm: AC=A’C’. ABC = A’B’C’ ?ABCGóc A xen giữa hai cạnh nào?Góc A xen giữa hai cạnh AB và ACGóc nào xen giữa hai cạnh AC và BCXen giữa hai cạnh AC và BC là góc C*NÕu ABC vµ A’B’C’ cã: AB = A’B’ B = B’ BC = B’C’th× ABC = A’B’C’ (C-G-C)Hai tam gi¸c trªn h×nh sau cã b»ng nhau kh«ng? ?2CABDChøng minhXÐt ∆ABC vµ ∆ADC cã: BC = DC (gt) ∆ ABC = ∆ ADC (c.g.c)ACB = ACD(gt);AC chung¸p dông trêng hîp b»ng nhau c¹nh-gãc-c¹nh. H·y ph¸t biÓu mét trêng hîp b»ng nhau cña hai tam gi¸c vu«ng cho h×nh sau:* ABC DFE* ABC DEFKiÓm nghiÖm* ABC DEFKiÓm nghiÖm* ABC DFEHệ Quả:ABC = DEF cã: A = D (= 900) Vµ AB = DE AC = DF *ABCDE12GHKIABD= AED (c.g.c) v×: AB = AE A1= A2, AD lµ c¹nh chung HGK = IKG (c.g.c)v×: GH = KI HGK = IKG GK lµ c¹nh chung Cñng cè: Bài 25/118(SGK)Trªn mçi h×nh sau, cã c¸c tam gi¸c nµo b»ng nhau? V× sao?Hình 82Hình 83* MNP vµ MPQ kh«ng b»ng nhau v×:N1 = N2 nhng hai gãc nµy kh«ng n»m xen gi÷a hai cÆp c¹nh b»ng nhau.MPNQ12Hình 83* GT ABC, MB = MC MA = ME KL AB // CEABECMH·y s¾p xÕp l¹i 5 c©u sau ®©y 1 c¸ch hîp lÝ ®Ó gi¶i bµi to¸n trªn1) MB = MC ( gt) AMB = EMC (hai gãc ®èi ®Ønh) MA = ME2) Do ®ã AMB = EMC ( c- g -c)3) MAB = MEC --> AB//CE (hai gãc b»ng nhau ë vÞ trÝ so le trong)4) AMB = EMC --> MAB = MEC ( hai gãc t¬ng øng)5) AMB vµ EMC cã: Bài 26/118(SGK)*1) MB = MC ( gi¶ thiÕt) AMB = EMC (hai gãc ®èi ®Ønh) MA = ME2) Do ®ã AMB = EMC ( c- g -c)3) MAB = MEC -> AB//CE ( cã hai gãc b»ng nhau ë vÞ trÝ so le trong)4) AMB = EMC --> MAB = MEC ( hai gãc t¬ng øng)5) AMB vµ EMC cã:Trong c¸c c©u sau c©u nµo ®óng (§), c©u nµo sai (S): 1. NÕu hai c¹nh vµ gãc cña tam gi¸c nµy b»ng hai c¹nh vµ gãc cña tam gi¸c kia th× hai tam gi¸c ®ã b»ng nhau 3.NÕu hai c¹nh cña tam gi¸c vu«ng nµy b»ng hai c¹nh cña tam gi¸c vu«ng kia th× hai tam gi¸c ®ã b»ng nhau. 2. NÕu MNP vµ XYZ cã:MN = XYN = YNP = YZTh× MNP = XYZBài tập trắc nghiệmSĐS(c.g.c) Híng dÉn vÒ nhµ - VÒ nhµ vÏ mét tam gi¸c tuú ý b»ng thíc th¼ng vµ com pa vÏ mét tam gi¸c b»ng tam gi¸c võa vÏ theo trêng hîp (c.g.c).- Thuéc, hiÓu kü tÝnh chÊt hai tam gi¸c b»ng nhau trêng hîp (c.g.c).- Lµm c¸c bµi tËp: 24, 26, 27, 28 (Trang 118 – SGK) 36, 37, 38 (SBT)
File đính kèm:
- Chuong IIBai 4 Tiet 25 truong hop bang nhau thu hai cua tam giac cgc.ppt