AM là trung tuyến của ABC MB = MC
+ Một tam giác có 3 đường trung tuyến. Ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm đó cách đỉnh bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
3 trang |
Chia sẻ: quynhsim | Lượt xem: 727 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn Hình học lớp 7 - Tuần 33: Tính chất các đường trung tuyến, đường phân giác, đường trung trực, đường cao của tam giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TUẦN 33
TÍNH CHẤT CÁC ĐƯỜNG TRUNG TUYẾN, ĐƯỜNG PHÂN GIÁC,
ĐƯỜNG TRUNG TRỰC, ĐƯỜNG CAO CỦA TAM GIÁC.
.
+ Đường trung tuyến là đường xuất phát từ đỉnh và đi qua trung điểm cạnh đối diện của tam giác.
AM là trung tuyến của D ABC Û MB = MC
+ Một tam giác có 3 đường trung tuyến. Ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm đó cách đỉnh bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
+ Giao điểm của ba đường trung tuyến gọi là trọng tâm của tam giác.
+ Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
+ Đường phân giác của tam giác là đường thẳng xuất phát từ một đỉnh và chia góc có đỉnh đó ra hai phần bằng nhau.
+ Một tam giác có ba đường phân giác. Ba đường phân giác của tam giác cùng đi qua một điểm. Điểm đó cách đều ba cạnh của tam giác. (giao điểm đó là tâm của đường tròn tiếp xúc với ba cạnh của tam giác)
+ Trong một tam giác cân, đường phân giác kẻ từ đỉnh đồng thời là đường trung tuyến ứng với cạnh đáy.
+ Đường trung trực của đoạn thẳng là đường vuông góc tại trung điểm của đoạn thẳng đó.
1/ Tóm tắt lý thuyết:
+ Đường trung trực của tam giác là đường trung trực của cạnh tam giác. Một tam giác có ba đường trung trực. Ba đường trung trực của tam giác cùng đi qua một điểm. Điểm đó cách đều ba đỉnh của tam giác
+ Các điểm nằm trên đường trung trực của đoạn thẳng AB cách đều hai đầu đoạn thẳng AB.
+ Tập hợp các điểm cách đều hai đầu đoạn thẳng AB là đường trung trực của đoạn thẳng AB.
+ Đọan vuông góc kẻ từ đỉnh đến đường thẳng chứa cạnh đối diện được gọi là đường cao của tam giác.
+ Một tam giác có ba đường cao. Ba đường cao của tam giác cùng đi qua một điểm. Điểm này gọi là trực tâm của tam giác.
2/ Bài tập:
Bài tập 1: Cho hình vẽ. Hãy điền vào chỗ trống () cho được kết quả đúng:
a) GM = GA; GN = GB; GP = GC.
b) AM = GM; BN = GN; CP = GP.
a) ; ; b) 3 ; 3 ; 3
Bài tập 2: Cho D ABC có BM, CN là hai đường trung tuyến cắt nhau tại G. Kéo dài BM lấy đoạn ME = MG. Kéo dài CN lấy đoạn NF = NG. Chứng minh:
EF = BC.
Đường thẳng AG đi qua trung điểm của BC.
Bài tập 3: Kéo dài trung tuyến AM của D ABC một đoạn MD có độ dài bằng 1/3 độ dài AM. Gọi G là trọng tâm của D ABC. So sánh các cạnh của D BGD với các trung tuyến của D ABC.
Bài tập 4: Cho D ABC vuông tại A. Gọi M là trung điểm của BC và G là trọng tâm của D ABC. Biết GM = 1,5cm. AB = 5cm. Tính AC và chu vi của tam giác ABC.
Bài tập 5: Cho D ABC cân tại A. Các đường cao BH và CK cắt nhau tại I. Chứng minh AI là phân giác của góc BAC.
Bài tập 6: Cho và tam giác ABC vuông cân tại A, có B thuộc Ox, C thuộc Oy, A và O thuộc hai nửa mặt phẳng đối nhau có bờ là BC. Chứng minh rằng OA là tia phân giác của góc xOy.
Bài tập 7: Các phân giác ngoài của tam giác ABC cắt nhau và tạo thành D EFG.
Tính các góc của D EFG theo các góc của D ABC.
Chứng minh rằng các phân giác trong của D ABC đi qua các điẻnh E, F, G.
Bài tập 8: Hai đường phân giác của góc B và C trong tam giác ABC cắt nhau ở I. Chứng minh rằng
Bài tập 9: Cho D ABC. Gọi I là giao điểm của hai tia phân giác hai góc A và B. Qua I vẽ đường thẳng song song với BC, cắt AB tại M, cắt AC tại N. Chứng minh rằng MN = BM + CN.
Bài tập 10: Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A và B. Tìm trên tia Oy điểm C sao cho CA = CB.
Bài tập 11; Cho tam giác ABC có AC > AB, phân giác trong của góc A cắt BC tại D. trên AC lấy điểm E sao cho AB = AE. Chứng minh rằng AD vuông góc với BE.
Bài tập 12: Cho D ABC cân ở A. Qua A kẻ đường thẳng d song song với đáy BC. Các đường phân giác của góc B và C lần lượt cắt d tại E và F. Chứng minh rằng:
d là phân giác ngoài của góc A.
AE = AF.
File đính kèm:
- tuan 34.doc