Bài giảng môn Hình học khối 12 - Tiết 16: Mặt cầu

Tập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r > 0) được gọi là mặt cầu tâm O bán kính r.

Nếu C, D nằm trên mặt cầu S(O, r) thì đoạn thẳng CD được gọi là dây cung của mặt cầu đó.

Dây cung AB đi qua tâm O của mặt cầu được gọi là đường kính của mặt cầu. Khi đó đường kính AB = 2r.

 

ppt17 trang | Chia sẻ: quynhsim | Lượt xem: 408 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Bài giảng môn Hình học khối 12 - Tiết 16: Mặt cầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
109nhiÖt liÖt chµo mõng c¸c thÇy c« vÒ dù giê th¨m lípKiÓm tra bµi còTập hợp các điểm trong mặt phẳng cách đều một điểm cố định gọi là gì? Traû lôøirTập hợp các điểm trong mặt phẳng cách đều một điểm cố định là đường tròn.Tập hợp các điểm trong không gian cách đều một điểm cố định gọi là gì?Tiết 16MẶT CẦUr0 Nếu C, D nằm trên mặt cầu S(O, r) thì đoạn thẳng CD được gọi là dây cung của mặt cầu đó.C I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦUTập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r > 0) được gọi là mặt cầu tâm O bán kính r.M B D A 1. Mặt cầu Dây cung AB đi qua tâm O của mặt cầu được gọi là đường kính của mặt cầu. Khi đó đường kính AB = 2r.§2. MẶT CẦUC I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU1. Mặt cầuAAABO2. Điểm nằm trong và điểm nằm ngoài mặt cầu. Khối cầu. Cho mặt cầu S(O; r) và một điểm A bất kỳ trong không gian. Nếu OA = r Nếu OA r Taäp hôïp caùc ñieåm thuoäc maët caàu S(O;r) cuøng vôùi caùc ñieåm trong maët caàu ñoù ñöôïc goïi laø khoái caàu hoaëc hình caàu taâm O baùn kính r.§2. MẶT CẦUThì điểm A nằm trên mặt cầu.Thì điểm A nằm trong mặt cầu.Thì điểm A nằm ngoài mặt cầu S(O; r).I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU1. Mặt cầu2. Điểm nằm trong và điểm nằm ngoài mặt cầu. Khối cầu.3. Biểu diễn mặt cầu- Người ta thường dùng phép chiếu vuông góc để biểu diễn cho mặt cầu. Khi đó hình biểu diễn của mặt cầu là một hình tròn.- Để hình biểu diễn trực quan hơn, người ta vẽ thêm hình biểu diễn của đường tròn.§2. MẶT CẦUI. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU1. Mặt cầu2. Điểm nằm trong và điểm nằm ngoài mặt cầu. Khối cầu.3. Biểu diễn mặt cầu4. Đường kinh tuyến và vĩ tuyến của mặt cầu. Giao của mặt cầu với các nửa mp có bờ là trục của mặt cầu được gọi là kinh tuyến của mặt cầu. Giao tuyến (nếu có) của mặt cầu với các mp vuông góc với trục của mặt cầu được gọi là vĩ tuyến của mặt cầu. Hai giao điểm của mặt cầu với trục được gọi là hai cực của mặt cầu.§2. MẶT CẦUKinh tuyến Vĩ tuyến I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU1. Mặt cầu2. Điểm nằm trong và điểm nằm ngoài mặt cầu. Khối cầu.3. Biểu diễn mặt cầu4. Đường kinh tuyến và vĩ tuyến của mặt cầu.§2. MẶT CẦUI. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦUII. GIAO CỦA MẶT CẦU VÀ MẶT PHẲNG1. Trường hợp h > rCho một mặt cầu S(O;r) vaø mp(P) bất kỳ. Gọi H laø hình chieáu vuoâng goùc cuûa O leân mp(P), h=OH. Ta xét các trường hợp sau :1. Trường hợp h > rOHrM§2. MẶT CẦUKhi đó mọi điểm của (P) đều nằm ngoài mặt cầu (S) (S)  (P) = I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦUII. GIAO CỦA MẶT CẦU VÀ MẶT PHẲNG1. Trường hợp h > rCho một mặt cầu S(O;R) vaø mp(P) bất kỳ. Gọi H laø hình chieáu vuoâng goùc cuûa O leân mp(P), h=OH. Ta xét các trường hợp sau :2. Trường hợp h = r§2. MẶT CẦUOHrMP2. Trường hợp h = rKhi đó mp(P) và mặt cầu S(O, r) chỉ có một điểm chung duy nhất là điểm H. Vậy (S)  (P) = H Điểm H gọi là tiếp điểm của(S) &(P). Mặt phẳng (P) gọi là tiếp diện của mặt cầu (S)I. MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦUII. GIAO CỦA MẶT CẦU VÀ MẶT PHẲNG1. Trường hợp h > rCho một mặt cầu S(O;R) vaø mp(P) bất kỳ. Gọi H laø hình chieáu vuoâng goùc cuûa O leân mp(P), h=OH. Ta xét các trường hợp sau :3. Trường hợp h r’’DCả 3 phương án trên đều saiBài 3: Cho mặt cầu S(O, r), hai mp () và (β) có khoảng cách đến tâm O của mặt cầu đã cho lần lượt là a, b(0<a<b<r).Hãy so sánh bán kính của 2 đường tròn giao tuyến lần lượt là r’ và r’’:CỦNG CỐ OÁi!!! Sai maát roài....Đúng2

File đính kèm:

  • pptmat cau(tiet 1).ppt