Bài giảng môn Đại số lớp 7 - Tuần 9 - Tiết 16 - Bài 11: Số vô tỉ , khái niệm về căn bậc hai

I - MỤC TIÊU

- Học sinh có khái niệm về số vô tỉ và thế nào là căn bậc hai của một số không âm

- Biết sử dụng đúng kí hiệu căn ()

 II - CHUẨN BỊ

- Máy tính bỏ túi, bảng phụ bài 82 (SGK-Trang 41).

- Bảng phụ 2: Kiểm tra xem cách viết sau có đúng không:

a)

 

doc4 trang | Chia sẻ: quynhsim | Lượt xem: 727 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 7 - Tuần 9 - Tiết 16 - Bài 11: Số vô tỉ , khái niệm về căn bậc hai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 17: Bài 11: Số vô tỉ , khái niệm về căn bậc hai (Ngày soạn: 27/10/2006; Ngày dạy: /11/2006) I - Mục tiêu - Học sinh có khái niệm về số vô tỉ và thế nào là căn bậc hai của một số không âm - Biết sử dụng đúng kí hiệu căn () II - Chuẩn bị - Máy tính bỏ túi, bảng phụ bài 82 (SGK-Trang 41). - Bảng phụ 2: Kiểm tra xem cách viết sau có đúng không: a) b) Căn bậc hai của 49 là 7 c) d) III - các hoạt động dạy, học Tổ chức. 7A : 7C : 7D : 2. Kiểm tra. - Khái niệm số hữu tỉ ? Số hữu tỉ được biểu diễn dưới dạng số thập phân như thế nào ? - Tính 3. Bài mới. - GV treo bảng phụ hình vẽ bài toán ? Tính diện tích hình vuông AEBF. ? So sánh SABCD và SAEBF. ? Gọi độ dài AB là x, biểu thị SABCD qua x - GV đưa ra số x = 1,41421356... giới thiệu đây là số vô tỉ. ? Số vô tỉ là gì. - GV nhấn mạnh: Số thập phân gồm số thập phân hữu hạn, vô hạn tuần hoàn và vô hạn không tuần hoàn. - Yêu cầu HS tính 32 và (3)2. - GV thông báo 3 và 3 là căn bậc hai của 9 ? Tính: ? ; 0 là các căn bậc hai của các số nào. ? Tìm x biết x2 = 1. ? Vậy các số như thế nào thì có căn bậc hai ? Căn bậc hai của 1 số không âm là 1 số như thế nào. - Yêu cầu HS làm ?1 ? Mỗi số dương có mấy căn bậc hai. ? Số 0 có mấy căn bậc hai. - Giáo viên thông báo chú ý. - HS làm ?2 ? Viết các căn bậc hai của 3; 10; 25 - Giáo viên: Có thể chứng minh được là các số vô tỉ. Vậy có bao nhiêu số vô tỉ. 1. Số vô tỉ Bài toán: x2 = 2 x = 1,41421356.... đây là số vô tỉ. - Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn. - Tập hợp các số vô tỉ là I 2. Khái niệm căn bậc hai. Ta có: 32 = 9 ; (3)2 = 9 Ta nói rằng 3 và -3 là căn bậc hai của 9 - Chỉ có số không âm mới có căn bậc hai Định nghĩa: Căn bậc hai của một số không âm a là số x sao cho x2 = a. ?1 Căn bậc hai của 16 là 4 và 4 Kết luận: - Số a > 0 có 2 căn bậc hai là . - Số 0 chỉ có 1 căn bậc hai là - Số a < 0 không có căn bậc hai. Chú ý: Không được viết . Chỉ viết là: và . ?2 - Căn bậc hai của 3 là và - Căn bậc hai của 10 là và - Căn bậc hai của 25 là và . - Có vô số các số vô tỉ như , 4. Củng cố. - Yêu cầu học sinh làm bài tập 82 (SGK-Trang 41) theo nhóm a) Vì 52 = 25 nên b) Vì 72 = 49 nên c) Vì 12 = 1 nên d) Vì nên - Yêu cầu học sinh sử dụng máy tính bỏ túi để làm bài tập 86 (SGK-Trang 42). 5. Hướng dẫn về nhà. - Cần nắm vững căn bậc hai của một số a không âm, so sánh phân biệt số hữu tỉ và số vô tỉ. - Đọc mục “Có thể em chư biết”. - Làm bài tập 83, 84, 85 (SGK-Trang 41, 42). Bài 106, 107, 110 (SBT-Trang 18). Tiết 18: Số thực (Ngày soạn: 27/10/2006; Ngày dạy: /10/2006) I - Mục tiêu - Học sinh biết được số thực là tên gọi chung cho cả số hữu tỉ và số vô tỉ. Biết được cách biểu diễn thập phân của số thực. Hiểu được ý nghĩa của trục số thực. - Thấy được sự phát triển của hệ thống số từ N Z Q R II - Chuẩn bị - Thước kẻ, com pa, máy tính bỏ túi. III - các hoạt động dạy, học Tổ chức. 7A : 7C : 7D : 2. Kiểm tra. - Định nghĩa căn bậc hai của một số a0? Tính: - Nêu quan hệ giữa số hữu tỉ, số vô tỉ với số thập phân? 3. Bài mới. - GV thông báo khái niệm số thực và kí hiệu tập số thực. ? Chỉ ra các số hữu tỉ , số vô tỉ ? Nêu quan hệ của các tập N, Z, Q, I với R - Yêu cầu HS làm ?1 - HS đứng tại chỗ trả lời ? x có thể là những số nào. - Yêu cầu làm bài tập 87 (SGK-Trang 44). ? Cho 2 số thực x và y, có những trường hợp nào xảy ra. - Học sinh suy nghĩ trả lời - GV thông báo việc so sánh 2 số thực tương tự như so sánh 2 số hữu tỉ viết dưới dạng số thập phân . ? Nhận xét phần nguyên, phần thập phân rồi so sánh. - Yêu cầu HS làm ?2 - Cả lớp làm bài ít phút, sau đó 2 HS lên bảng làm. - GV đặt vấn đề việc biểu diễn số vô tỉ trên trục số. - Học sinh nghiên cứu cách biểu diễn số vô tỉ trong SGK - Giáo viên hướng dẫn học sinh biểu diễn. - Giáo viên nêu ra một số thông tin về trục số thự.: - GV nêu ra chú ý về các phép toán trong tập hợp số thực. 1. Số thực. - Số hữu tỉ và số vô tỉ gọi chung là số thực - Kí hiệu tập số thực là R: Ví dụ: các số: 2; 5; ; 0,234; 1,(45); ; ... - Như vậy ?1 Cách viết x R cho ta biết x là số thực x có thể là số hữu tỉ hoặc số vô tỉ - Với 2 số thực x và y bất kì ta luôn có hoặc x = y hoặc x > y hoặc x < y. Ví dụ: So sánh 2 số a) 0,3192... < 0,32(5) b) 1,24598... > 1,24596... ?2 a) 2,(35) < 2,369121518... b) -0,(63) và Ta có 2. Trục số thực. Ví dụ: Biểu diễn số trên trục số. - Mỗi số thực được biểu diễn bởi 1 điểm trên trục số. - Mỗi điểm trên trục số đều biểu diễn 1 số thực. - Trục số gọi là trục số thực. Chú ý: Trong tập hợp các số thực cũng có các phép toán với các tính chất tương tự như trong tập hợp các số hữu tỉ. 4. Củng cố. - Học sinh làm các bài 88, 89 (SGK-Trang 45) - Giáo viên treo bảng phụ bài tập 88, 89. Học sinh lên bảng làm Bài tập 88 a) Nếu a là số thực thì a là số hữu tỉ hoặc số vô tỉ b) Nếu b là số vô tỉ thì b được viết dưới dạng số thập phân vô hạn không tuần hoàn. Bài tập 89: Câu a, c đúng; câu b sai. 5. Hướng dẫn về nhà. - Học theo SGK, nắm được số thực gồm số hữu tỉ và số vô tỉ. - Làm bài tập 90 (SGK-Trang 45). - Bài tập 117; 118 (SBT-Trang 20). Ngày 30 tháng 10 năm 2006. Kí duyệt

File đính kèm:

  • docTuan 9.doc