Bài giảng môn Đại số lớp 7 - Cộng trừ đa thức một biến

 Học sinh 1: Sắp xếp Q(x) theo luỹ thừa giảm dần của biến
Q(x) = x2 + 2x4 + 4x3 + 3x2- 4x -1Học sinh 2: Cả lớp:
Q(x) = 2x5 +5x4- x3 + x2 - x – 1
P(x) = -x4 + x3+ 5x+ 2
Tính P(x) + Q(x)

 

ppt18 trang | Chia sẻ: quynhsim | Lượt xem: 659 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 7 - Cộng trừ đa thức một biến, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đại số 7 Tiết 60 Cộng trừ đa thức một biến năm học 2008 -2009Cộng trừ đa thức một biếnĐại số 7Tiết 22Phũng GD Đụng Hà - Quảng TrịGV: Nguyễn Thị Hồng Nhạn Học sinh 1: Sắp xếp Q(x) theo luỹ thừa giảm dần của biến Q(x) = x2 + 2x4 + 4x3 + 3x2- 4x -1Kiểm tra bài cũHọc sinh 2: Cả lớp: Q(x) = 2x5 +5x4- x3 + x2 - x – 1 P(x) = -x4 + x3+ 5x+ 2 Tính P(x) + Q(x)1. Q(x) = 2x4+ 4x3 + (3x2 + x2) - 4x -1 = 2x4+ 4x3 + 4x2 - 4x -1 Kiểm tra bài cũ2. Q(x) = 2x5 +5x4 - x3 + x2 – x – 1 P(x) = -x4 + x3+ 5x+ 2 * P(x) + Q(x) = 2x5 +5x4 - x3 + x2 - x - 1 -x4 + x3+ 5x+ 2 = 2x5+ (5x4 - x4) + (- x3 + x3) + x2+(5x - x)+(2 - 1) = 2x5+ 4x4 + x2+ 4x + 11. Cộng hai đa thức một biếna. Ví dụ Q(x) = 2x5 +5x4 - x3 + x2 – x – 1 P(x) = -x4 + x3 + 5x + 2 Tính P(x) + Q(x)Cách 1: P(x) +Q(x) = 2x5 +5x4 - x3 + x2 - x - 1 -x4 + x3+ 5x+ 2 = 2x5+ (5x4 - x4) + (-x3 + x3) + x2+(5x - x)+(2 - 1) = 2x5+ 4x4 + x2+ 4x + 1Cách 2: Cộng 2 đa thức theo cột dọc P(x) = 2x5 +5x4 - x3 + x2 - x - 1 Q(x) = -x4 + x3 + 5x + 2 P(x) +Q(x) = 2x5+ 4x4 + x2 + 4x + 1 Đại số 7 Tiết 60 Cộng trừ đa thức một biến Muốn cộng 2 đa thức một biến ta làm như thế nào?1. Cộng hai đa thức một biếna. Ví dụ Q(x) = 2x5 + 5x4 - x3 + x2 - x - 1 P(x) = - x4 + x3 + 5x + 2 Tính P(x) + Q(x)b. Kết luậnĐể cộng hai đa thức một biến, ta có thể thực hiện một trong hai cách sauCách 1: Thực hiện theo cộng đa thứcCách 2: Đại số 7 Tiết 60 Cộng trừ đa thức một biến Cộng hai đa thức đặt theo cột dọcBài 44 – SGK 45P(x) = - 5x3 - + 8x4 + x2Q(x) = x2 – 5x- 2x3+ x4 - Tính P(x) + Q(x)(Dãy phải cộng theo cách 1- Dãy trái cộng theo cách 2)Cách 2: P(x ) = 8x4 - 5x3 + x2 - Q(x) = x4 - 2x3 + x2 - 5x - P(x) + Q(x) = 9x4 – 7x3+2x2 – 5x + 1Cách 1: P(x) +Q(x) = - 5x3 - + 8x4 + x2 + x2 – 5x- 2x3+ x4 - = (8x4+x4)+(-5x3-2x3)+(x2+ x2)+( + ) = 9x4 – 7x3+2x2 – 5x + 11. Cộng hai đa thức một biếna. Ví dụb. Kết luậnCách 1: Giải theo cách trừ hai đa thức đã học P(x) -Q(x) = 2x5+ 6x4 - 2x3 + x2 - 6x + 1 Cách 2: Trừ hai đa thức theo cột dọc2. Trừ hai đa thức một biếna. Ví dụ P(x) = 2x5 + 5x4 - x3 + x2 - x - 1 Q(x) = - x4 + x3 + 5x + 2 Tính P(x) - Q(x) P(x) = 2x5 + 5x4 - x3 + x2 - x - 1 Q(x) = -x4 + x3 + 5x + 2 Đại số 7 Tiết 60 Cộng trừ đa thức một biến Muốn trừ số A cho số B ta làm như thế nào?A – B = A +(-B)A – B = A +(-B) P(x) = 2x5 + 5x4 - x3 + x2 - x - 1 Q(x) = 0 -x4 + x3 +0 + 5x + 2 P(x) -Q(x) = (2-0)x5+ [5-(-1)]x4 +[(-1)-1]x3 + (1-0)x2 +[(-1)-5x +[(-1)+2] P(x) -Q(x) = 2x5 + 6x4 - 2x3 + x2 - 6x + 11. Cộng hai đa thức một biếna. Ví dụb. Kết luậnCách 1: Giải theo cách trừ hai đa thức đã học P(x) -Q(x) = 2x5+ 6x4 - 2x3 + x2 - 6x + 1 Cách 2: Trừ hai đa thức theo cột dọc2. Trừ hai đa thức một biếna. Ví dụ P(x) = 2x5 + 5x4 - x3 + x2 - x - 1 Q(x) = - x4 + x3 + 5x + 2 Tính P(x) - Q(x) P(x) = 2x5 + 5x4 - x3 + x2 - x - 1 Q(x) = 0 -x4 + x3 +0 + 5x + 2 P(x) -Q(x) = 2x5+ 6x4 - 2x3 + x2 - 6x + 1 Đại số 7 Tiết 60 Cộng trừ đa thức một biến Muốn cộng trừ 2 đa thức một biến ta làm như thế nào?1. Cộng hai đa thức một biếna. Ví dụb. Kết luận2. Trừ hai đa thức một biếna. Ví dụb. Chú ýĐể cộng hoặc trừ hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau:Cách 1: Thực hiện theo cách cộng, trừ đa thức đã học ở bài 6Cách 2: Sắp xếp các hạng tử của hai đa thức cùng theo luỹ thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số Đại số 7 Tiết 60 Cộng trừ đa thức một biến Củng cố?1 Cho hai đa thức: M(x) = x4 + 5x3- x2 + x - 0,5 N(x) =3x4 - 5x2 - x - 2,5- Dãy phải thực hiện M(x) + N(x)- Dãy trái thực hiện M(x) - N(x) M(x) + N(x) = 4x4 + 5x3 - 6x2 - 3 M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2 Củng cốBài 45 – SGK45 Cho đa thức: P(x) = x4 - 3x2 + - xTìm các đa thức Q(x), R(x) sao cho:P(x) + Q(x) = x5 – 2x2 + 1 (Nhóm 1)P(x) – R(x) = x3 (Nhóm 2)Củng cốCho đa thức: P(x) = x4 - 3x2 + - x -Tìm các đa thức Q(x), R(x) sao cho:P(x) + Q(x) = x5 – 2x2 + 1P(x) – R(x) = x3Nhóm 1a) P(x) + Q(x) = x5 – 2x2 + 1=> Q(x) = x5 – 2x2 + 1 - P(x) Q(x) = x5 – 2x2 + 1 – (x4 - 3x2 – x + ) Q(x) = x5 – 2x2 + 1 – x4 + 3x2 + x - Q(x) = x5 – x4 + x2 + x + Nhóm 2b) P(x) - R(x) = x3 => R(x) = P(x) – x3 R(x) = x4 - 3x2 + - x - x3 R(x) = x4 - x3 - 3x2 - x +Củng cốBài 45 – SGK 45 Cho đa thức: P(x) = x4 - 3x2 + - xTìm các đa thức Q(x), R(x) sao cho:P(x) + Q(x) = x5 – 2x2 + 1 (Nhóm 1)P(x) – R(x) = x3 (Nhóm 2)Bài 48 – SGK 46: Chọn đa thức mà em cho là kết quả đúng(2x3 – 2x + 1) – (3x2 + 4x – 1) =?A. 2x3 + 3x2 – 6x + 2B. 2x3 - 3x2 – 6x + 2C. 2x3 - 3x2 + 6x + 2D. 2x3 - 3x2 – 6x - 2Về nhà- Làm bài tập 46, 47 (SGK- 45)Chú ý Bài 47 tương tự bài 44- Chuẩn bị BT phần Luyện tập

File đính kèm:

  • pptTiet 60 Cong tru da thuc mot bien.ppt