I - Định lý đảo về dấu của tam thức bậc hai
Cho tam thức bậc hai f(x) = ax? + bx + c (a? 0), ? ? R.
a f (? ) < 0
* f(x) có hai nghiệm phân biệt x?, x? (x?
* x? < ? < x?.
( p \ c )
, khi đó theo bảng xét dấu của tam thức f(x)
Nên a.f(? ) = 0 , ?? ??R (trái giả thiết)
f(x) có hai nghiệm phân biệt x?, x?
10 trang |
Chia sẻ: quynhsim | Lượt xem: 377 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 12 - Tiết 5: Định lý đảo về dấu tam thức bậc hai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bảng xét dấu tam thức bậc haiD 0, x Raf(x) 0, xD = 0D > 0Phương trình f(x) = 0có hai nghiệm x1 0, x (-; x1) (x2; +) af(x) 0 .f(x) có hai nghiệm phân biệt x, xDo đóx 0a.f(a) > 0a.f(b) < 0Phương trình f(x) = 0 có hai nghiệm x1 < x2 Phương trình f(x) = 0 có hai nghiệm x1 < x2 1nghiệm thuộc (a, b), nghiệm kia nằm ngoài đoạn [a, b] *Theo định lý đảo:* Ngược lại : Nếu xảy ra khả năng (2) hoặc (3) .Thì: af(a) . af(b) < 0Vậy : f(a)f(b) < 0 (đpcm)và x1 < a < x2(2)< bx1 < b < x2(3)a < Ví dụ 2: Cho tam thức bậc 2 f(x) = x2 – 1+mx( x+4) với m -1 (1)Chứng minh phương trình f(x) = 0 luôn có hai nghiệm phân biệt m.Bài giải : f(0) = -1 ; f(-4) = 15 f(0).f(-4) <0 với m.Theo hệ quả 2 Phương trình f(x) = 0 luôn có 2 nghiệm phân biệt m.(1) f(x) = (1+m) x2 + 4m x -1Ví dụ 3X2+ (m+2) x +3m - 4 = 0Giải:áp dụng đ.l đảo:a =1 ;f(-3) =-1af(-3) <0Vậy phương trình có 2 nghiệm:x1; x2( x 1< x2)Và: x1< -3 < x2Ta có: a = 1 + m 0CMRằng: số - 3 thuộc khoảng hai nghiệm của phương trình sau:Ví dụ 4: Cho phương trình: f(x) = 2x2 + ( 2m - 1)x + m + 1 = 0Tìm m để phương trình có một nghiệm thuộc khoảng ( 1; 3) - nghiệm kia ngoài đoạn [- 1; 3 ] Bài giảiTheo hệ quả 2phương trình có một nghiệm (-1; 3) nghiệm kia ngoài đoạn [ -1; 3 ] f(-1).f(3) < 0 (*) ( 4 - m)(7m + 16) < 0m(-,-16/7) ( 4, )Kết luận: với m (-,-16/7) ( 4, ) thì:phương trình có một nghiệm (-1; 3) nghiệm kia ngoài đoạn [ -1; 3 ]f(-1)= 4 - m ; f(3) = 7m + 16 .(*) Định lý: Cho tam thức bậc hai (x)= a x2 + bx +c (a o) ; R.Nếu:a()< o thì : + (x) có hai nghiệm phân biệt x < x +Và x < < x2112Hệ quả2:Cho tam thức bậc hai : Và , R ( ).PT (x) = o có hai nghiệm phân biệt, một nghiệm nằm trong (, ),nghiệm kia nằm ngoài , () () < o.(x) <Hệ quả1:ĐK cần và đủ để P.T.Bâc hai có hai nghiệm: x ,x (x x )L.à : R : a() < o.<1212áp dụng:Bài toán2: Xác định m để P.T.bậc hai có một nghiệm (a,b), nghiệm kia ngoài đoạn a,b (a). (b )< 0 (H.qủa 2)* a()< 0(Đ.L đảo -H.quả 1)* (). ( )< 0 (H.quả 2)12Nếu a( :)< 0 x < < x (Đ.L đảo )So sánh một số với các nghiệm của phương trình bậc hai:Bài toán3:CM. phương trình bậc hai có hai nghiệm phân biêt: Bài toán1:Bài tập về nhà: Bài 1,2,3,4. Trang 122- SGKXin chân thành cảm ơncác em học sinh.
File đính kèm:
- Dinh ly dao dau tam thuc bac 2.ppt