Phương pháp 1:
· Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản
· Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức . và biến đổi lượng giác bằng các công thức lượng giác cơ bản.
Ví dụ : Tìm họ nguyên hàm của các hàm số sau:
9 trang |
Chia sẻ: quynhsim | Lượt xem: 477 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 12 - Chuyên đề 13: Tích phân và ứng dụng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề 13: TÍCH PHÂN VÀ ỨNG DỤNG
TÓM TẮT GIÁO KHOA
I. Bảng tính nguyên hàm cơ bản:
Bảng 1 Bảng 2
Hàm số f(x)
Họ nguyên hàm F(x)+C
Hàm số f(x)
Họ nguyên hàm F(x)+C
a ( hằng số)
ax + C
sinx
-cosx + C
sin(ax+b)
cosx
Sinx + C
cos(ax+b)
tgx + C
-cotgx + C
tgx
cotgx
Phương pháp 1:
Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản
Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức ... và biến đổi lượng giác bằng các công thức lượng giác cơ bản.
Ví dụ : Tìm họ nguyên hàm của các hàm số sau:
1. 2.
Phương pháp 2: Sử dụng cách viết vi phân hóa trong tích phân
Ví dụ: Tính các tích phân: 1. 2. 3.
I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG ĐN VÀ CÁC TÍNH CHẤT TÍCH PHÂN
1. Định nghĩa: Cho hàm số y=f(x) liên tục trên . Giả sử F(x) là một nguyên hàm của hàm số f(x) thì:
( Công thức NewTon - Leiptnitz)
2. Các tính chất của tích phân:
Tính chất 1: Nếu hàm số y=f(x) xác định tại a thì :
Tính chất 2:
Tính chất 3: Nếu f(x) = c không đổi trên thì:
Tính chất 4: Nếu f(x) liên tục trên và thì
Tính chất 5: Nếu hai hàm số f(x) và g(x) liên tục trên và thì
Tính chất 6: Nếu f(x) liên tục trên và thì
Tính chất 7: Nếu hai hàm số f(x) và g(x) liên tục trên thì
Tính chất 8: Nếu hàm số f(x) liên tục trên và k là một hằng số thì
Tính chất 9: Nếu hàm số f(x) liên tục trên và c là một hằng số thì
Tính chất 10: Tích phân của hàm số trên cho trước không phụ thuộc vào biến số , nghĩa là :
Bài 1: Tính các tích phân sau:
1) 2) 3) 4) 5) 6) = 7)= 8) = 2 9)= 1+ ln2 10) = 11)= 1 12)= 13) 14) 15) 16) 17) 18)
Bài 2:
1) 2) 3) 4)
5) 6) 7) 8)
Bài 3:
1) Tìm các hằng số A,B để hàm số thỏa mãn đồng thời các điều kiện
và
2) Tìm các giá trị của hằng số a để có đẳng thức :
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ :
1) DẠNG 1:Tính I = bằng cách đặt t = u(x)
Công thức đổi biến số dạng 1:
Cách thực hiện:
Bước 1: Đặt
Bước 2: Đổi cận :
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
(tiếp tục tính tích phân mới)
Tính các tích phân sau:
1) 2) 3) 4)
5) 6) 7) 8)
9) 10) 11) 12)
13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
2) DẠNG 2: Tính I = bằng cách đặt x =
Công thức đổi biến số dạng 2:
Cách thực hiện:
Bước 1: Đặt
Bước 2: Đổi cận :
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
(tiếp tục tính tích phân mới)
Tính các tích phân sau:
1) 2) 3) 4)
5) 6) 7) 8)
9) 10) 11) 12)
13) 14) 15) 16)
17) 18)
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP VI PHÂN:
Tính các tích phân sau:
1) 2) 3) 4) 5) 6) 7)
III. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN:
Công thức tích phân từng phần:
Hay:
Cách thực hiện:
Bước 1: Đặt
Bước 2: Thay vào công thức tích phân từng từng phần :
Bước 3: Tính và
Tính các tích phân sau:
1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
16) 17) 18)
19) 20)
MỘT SỐ BÀI TOÁN TÍCH PHÂN QUAN TRỌNG VÀ ỨNG DỤNG
Bài 1: 1) CMR nếu f(x) lẻ và liên tục trên [-a;a] (a>0) thì :
2) CMR nếu f(x) chẵn và liên tục trên [-a;a] (a>0) thì :
Bài 2: 1) CMR nếu f(t) là một hàm số liên tục trên đọan [0,1] thì:
a)
b)
ÁP DỤNG: Tính các tích phân sau:
1) 2) 3)
4) 5) 6)
7) 8)
Bài 3:CMR nếu f(x) liên tục và chẵn trên R thì ;
ÁP DỤNG : Tính các tích phân sau:
1) 2) 3)
IV .ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG:
Công thức:
Tính diện tích của các hình phẳng sau:
1) (H1): 2) (H2) : 3) (H3):
4) (H4): 5) (H5): 6) (H6):
7) (H7): 8) (H8) : 9) (H9):
10) (H10): 11) 12)
V. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY.
Công thức:
Bài 1: Cho miền D giới hạn bởi hai đường : x2 + x - 5 = 0 ; x + y - 3 = 0
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox
Bài 2: Cho miền D giới hạn bởi các đường :
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy
Bài 3: Cho miền D giới hạn bởi hai đường : và y = 4
Tính thể tích khối tròn xoay được tạo nên do D quay quanh:
a) Trục Ox
b) Trục Oy
Bài 4: Cho miền D giới hạn bởi hai đường : .
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox
Bài 5: Cho miền D giới hạn bởi các đường :
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox
------------------------------Hết-------------------------------
File đính kèm:
- Tich_phan_&_ung_dung_6049_89453325.doc