- Nắm được giới hạn của hàm số .
- Nắm được các công thức tính đạo hàm của các hàm số lượng giác.
Kĩ năng:
- Áp dụng thành thạo các qui tắc đã biết để tính đạo hàm của các hàm số dạng y = sinu, y = cosu, y = tanu, y = cotu.
Thái độ:
- Rèn luyện tính cẩn thận, chính xác, tư duy có hệ thống.
2 trang |
Chia sẻ: quynhsim | Lượt xem: 434 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số lớp 11 - Tiết dạy: 69 - Bài 3: Đạo hàm của hàm số lượng giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 05/03/2009 Chương V: ĐẠO HÀM
Tiết dạy: 69 Bàøi 3: ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC
I. MỤC TIÊU:
Kiến thức:
Nắm được giới hạn của hàm số .
Nắm được các công thức tính đạo hàm của các hàm số lượng giác.
Kĩ năng:
Áp dụng thành thạo các qui tắc đã biết để tính đạo hàm của các hàm số dạng y = sinu, y = cosu, y = tanu, y = cotu.
Thái độ:
Rèn luyện tính cẩn thận, chính xác, tư duy có hệ thống.
II. CHUẨN BỊ:
Giáo viên: Giáo án.
Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về đạo hàm của hàm số.
III. HOẠT ĐỘNG DẠY HỌC:
1. Ổn định tổ chức: Kiểm tra sĩ số lớp.
2. Kiểm tra bài cũ: (3')
H. Tìm đạo hàm của các hàm số: , .
Đ. , .
3. Giảng bài mới:
TL
Hoạt động của Giáo viên
Hoạt động của Học sinh
Nội dung
Hoạt động 1: Tìm hiểu giới hạn của
15'
· Dẫn dắt HS dự đoán kết quả . Từ đó nêu định lí.
H1. Tính
; ?
H2. Biến đổi biểu thức hàm số về dạng ?
Đ1. » 0,9999833334
» 0,9999998333
Đ2.
a)=
=
b) =
= 2.1 = 2
1. Giới hạn của
Định lí 1:
Mở rộng:
VD1: Tìm các giới hạn sau:
a) b)
Hoạt động 2: Tìm hiểu đạo hàm của hàm số y = sinx
15'
· Hướng dẫn HS chứng minh định lí.
H1. Nêu các bước tính đạo hàm bằng định nghĩa ?
H2. Phân tích hàm số hợp ?
Đ1.
Dy = sin(x + Dx) – sinx
=
Đ2. y = sinu, u = 3x +
Þ y¢ = 3.
2. Đạo hàm của hàm số y = sinx
Định lí 2:
Chú ý: Nếu y = sinu và u = u(x)
thì
VD2: Tìm đạo hàm của hàm số:
Hoạt động 3: Tìm hiểu đạo hàm của hàm số y = cosx
7'
H1. Biến đổi cosx ?
H2. Phân tích hàm số hợp ?
Đ1. cosx = .
Þ (cosx)¢ =
= = –sinx
Đ2. y = cosu, u = x3 – 1
Þ
3. Đạo hàm của hàm số y = cosx
Định lí 3:
Chú ý: Nếu y =cosu và u = u(x)
thì
VD3: Tìm đạo hàm của hàm số:
Hoạt động 4: Củng cố
3'
· Nhấn mạnh:
– Cách tính giới hạn của hàm số .
– Các công thức tính đạo hàm của các hàm số lượng giác
4. BÀI TẬP VỀ NHÀ:
Bài 1, 2, 3, 5, 6, 7 SGK.
Đọc tiếp bài "Đạo hàm của hàm số lượng giác".
IV. RÚT KINH NGHIỆM, BỔ SUNG:
File đính kèm:
- dai11cb69.doc