Nếu x1, x2 là hai nghiệm của phương trình
ax2 + bx + c= 0(a?0)
Cho phương trình bậc hai :
ax2+ bx +c = 0 (a?0) có nghiệm thì đều có thể viết các nghiệm đó dưới dạng:
Hãy tính : x1+x2= .
x1. x2=.
13 trang |
Chia sẻ: quynhsim | Lượt xem: 739 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng lớp 9 môn Toán học - Tiết 57 : Hệ thức Vi – ét và ứng dụng. Luyện tập, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
mừng ngày 26 - 3Chào mừng cỏc thầy cụ giỏo về dự hội giảngTrường THCS Việt HồngNăm học 2008 - 20091. Hệ thức vi- ét Định lí vi- ét Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0)Hãy tính : x1+x2= .......... x1. x2=..............thì Cho phương trình bậc hai : ax2+ bx +c = 0 (a≠0) có nghiệm thì đều có thể viết các nghiệm đó dưới dạng:Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập?1Cú thể em chưa biết ?Phrăng – xoa Vi-ột (sinh 1540- 1603) tại Phỏp.ễng là người đầu tiờn dựng chữ để kớ hiệu cỏc ẩn, cỏc hệ số của phương trỡnh và dựng chỳng để biến đổi và giải phương trỡnh nhờ cỏch đú mà nú thỳc đầy Đại số phỏt triển mạnh.- ễng là người phỏt hiện ra mối liờn hệ giữa cỏc nghiệm và cỏc hệ số của phương trỡnh.- ễng là người nổi tiếng trong giải mật mó.- ễng là một luật sư, một chớnh trị gia nổi tiếng.1. Hệ thức vi ét Định lí vi- ét Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) Ví dụ: Biết các phương trình sau có nghiệm, không giải phương trình, hãy tính tổng và tích các nghiệm của chúnga, 2x2- 9x +2 = 0 ; b, -3x2+6x -1 =0 a, Phương trình 2x2- 9x +2 =0 có nghiệm, theo hệ thức Vi-ét ta có: b, Phương trình - x2 + 6x - 1 = 0 có nghiệm, theo Hệ thức Vi-ét ta có:Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tậpLời giảiáp dụng1. Hệ thức vi ét Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Cho phương trình 2x2- 5x+3 = 0 .a, Xác định các hệ số a,b,c rồi tính a+b+c.b, Chứng tỏ x1 = 1 là một nghiệm của phương trình.c, Dùng định lý Vi- ét để tìm x2.. ?3 Cho phương trình 3x2 +7x+4=0.a, Chỉ rõ các hệ số a,b,c rồi tính a-b+c.b, Chứng tỏ x1= -1 là một nghiệm của phương trình.c, Tìm nghiệm x2Nhóm 2 và nhóm 4 (Làm ?3)Hoạt Động nhóm ( Thời gian 3 phỳt)Tổng quát 2: Nếu phương trình ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là acx2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trinh có môt nghiệm x1=1, còn nghiệm kia làcx2= aTiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tậpNhóm 1 và nhóm 3 ( Làm ?2 )áp dụng1. Hệ thức vi - ét Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Tổng quát 2: Nếu phương trình ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là acx2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trinh có môt nghiệm x1=1, còn nghiệm kia làcx2= aTiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập ?4: Tính nhẩm nghiệm của phương trình a, - 5x2+3x +2 =0; b, 2004x2+ 2005x+1=0Lời giải b, 2004x2+2005x +1=0 có a=2004 ,b=2005 ,c=1 a, -5x2 +3x+2=0 có a=-5, b=3, c=2 x2=2-5=-25Vậy x1=1,x2= -12004Vậy x1= -1,=>a-b+c=2004-2005+1=0=>a+b+c= -5+3+2= 0. áp dụng1. Hệ thức vi- ét Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Tổng quát 2: Nếu phương trình ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là acx2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trình có một nghiệm x1=1, còn nghiệm kia làcx2= a2. Tìm hai số biết tổng và tích của chúng Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình x2 – Sx + P = 0 Điều kiện để có hai số đó là S2 -4P ≥0Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập Giả sử hai số cần tìm có tổng bằng S và tích bằng P. Gọi một số là x thì số kia là S - x. Theo giả thiết ta có phương trình x(S – x) = P hay x2- Sx + P=0.Nếu Δ= S2- 4P ≥0, thì phương trình (1) có nghiệm . Các nghiệm này chính là hai số cần tìmáp dụng Ví dụ1. Tìm hai số, biết tổng của chúng bằng 27, tích của chúng bằng 180 Giải :Hai số cần tìm là nghiệm của phương trình x2_ 27x +180 = 0 Δ = 272- 4.1.180 = 729-720 = 9Vậy hai số cần tìm là 15 và 12áp dụng1. Hệ thức vi- ét Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Tổng quát 2: Nếu phương trình ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là acx2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trình có môt nghiệm x1=1, còn nghiệm kia làc x2= a 2. Tìm hai sô biết tổng và tích của chúng Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình x2 – Sx + P = 0 Điều kiện để có hai số đó là S2 -4P ≥0áp dụng Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập?5. Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5Ví dụ 2: Tính nhẩm nghiệm của phương trình x2-5x+6 = 0.Giải. Vì 2+3=5; 2.3=6 nên x1=2, x2= 3 là hai nghiệm của phương trình đã cho.GiảiHai số cần tìm là nghiệm của phương trình x2- x+5 = 0Phương trình vô nghiệm. Vậy không có hai số nào có tổng bằmg 1 và tích bằng 5Δ=(-1)2 – 4.1.5 = - 19<0.áp dụng áp dụng Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Tổng quát 2: Nếu phương trình ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là acx2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trình có môt nghiệm x1=1, còn nghiệm kia làcx2= a 2. Tìm hai sô biết tổng và tích của chúng Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình x2 – Sx + P = 0 Điều kiện để có hai số đó là S2 -4P ≥0Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập1. Hệ thức vi- ét Lời giải Bài 27/ SGK. Dùng hệ thức Vi- ét để tính nhẩm các nghiệm của phương trình.a,x2 – 7x+12= 0(1); b, x2+7x+12=0 (2)Nửa lớp làm câu aNửa lớp làm câu b a, Vì 3 + 4 = 7 và 3.4 = 12 nên x1=3 ,x2=4 là phương trình (1) b, Vì (-3) +(-4) =-7và(-3).(-4) = 12 nên x1=-3, x2=-4 là phương trình (2)áp dụng Định lí Vi-ét: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c= 0(a≠0) thì Tổng quát 2: Nếu phương trình :ax2+bx+c=0 (a≠0 ) có a-b+c = 0 thì phương trình có một nghiệm x1= -1, còn nghiệm kia là ac x2= -Tổng quát 1 : Nếu phương trình ax2+bx+c= 0 (a≠ 0 ) có a+b+c=0 thì phương trinh có môt nghiệm x1=1, còn nghiệm kia làc x2= a 2. Tìm hai số biết tổng và tích của chúng Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình x2 – Sx + P = 0 Điều kiện để có hai số đó là S2 -4P ≥0Tiết 57 : Hệ thức Vi – ột và ứng dụng. Luyện tập1. Hệ thức vi- ét Luyện tập Bài tập 25: Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (...)a, 2x2- 17x+1= 0, Δ =...... x1+x2=...... x1.x2=........... b, 5x2- x- 35 = 0, Δ =...... x1+x2=...... x1.x2=........... c, 8x2- x+1=0, Δ =...... x1+x2=...... x1.x2=........... d, 25x2 + 10x+1= 0, Δ =...... x1+x2=...... x1.x2=........... Hướng dẫn về nhà-Học thuộc định lí Vi-ét và cách tìm hai số biết tổng và tích -Nắm vững cách nhẩm nghiệm : a+b+c = 0 a-b+c = 0 hoặc trường hợp tổng và tích của hai nghiệm (S và P) là những số nguyên có giá trị tuyệt đối quá không quá lớn-Bài tập về nhà số 28 (b,c) trang 53, bài 29 trang 54 SGK, bài 35,36,37,38,41 trang 43,44 SBTGiỏo viờn thực hiệnPhan Đỡnh PhươngXin chân thành cám ơncác thầy cô giáo và toàn thể các em học sinhBài tập Cho phương trỡnh: x – 6x + m =0 (*)1.Cho m = 5a) Hóy giải phương trỡnh trờn. b) Tỡm nghịch đảo hai nghiệm của phương trỡnh trờn. Tỡm phương trỡnh nhận nghịch đảo cỏc nghiệm của cỏc phương trỡnh trờn là nghiệm 2.a) Tỡm điều kiện của m để phương trỡnh cú nghiệm. b) Tớnh c) Tỡm m để phương trỡnh cú 2 nghiệm đối nhau. d) Tỡm m để phương trỡnh cú 2 nghiệm là nghịch đảo của nhau.. e) Tỡm m để phương trỡnh cú 2 nghiệm là cựng dấu..f) Tỡm m để phương trỡnh cú 2 nghiệm là cựng dấu dương..Ngoài ra ta cũn cú rất nhiều cỏc bài toỏn cú liờn quan đến hai nghiệm của phương trỡnh cỏc em tự đặt ra và tỡm cỏch giải
File đính kèm:
- he thuc viet va ung dung Luyen tap.ppt