Câu hỏi: Cho đường tròn tâm O, bán kính R.Trong các dây của đường tròn, dây lớn nhất là dây như thế nào? Dây đó có độ dài bằng bao nhiêu?
* Để trả lời được câu hỏi này các em hãy so sánh độ dài của đường kính với các dây còn lại. Để biết được điều đó. Hôm nay thầy và các em cùng tìm hiểu bài mới.
9 trang |
Chia sẻ: quynhsim | Lượt xem: 779 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng lớp 9 môn Toán học - Tiết 20 - Bài 2: Đường kính và dây của đường tròn (Tiếp), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
PHÒNG GD SƠN TỊNH TRƯỜNG THCS TỊNH BẮCCHÀO MỪNG QUÍ THẦY CÔ VỀ DỰ GV: Võ Hoàng HiểnToán 9Kiểm tra bài cũCâu hỏi kiểm tra.1.Vẽ đường tròn ngoại tiếp ΔABC trong các trường hợp sau:a. Tam giác nhọnb. Tam giác vuông c. Tam giác tù2.Hãy nêu rõ vị trí của tâm đường tròn ngoại tiếp tam giác ABC đối với tam giác ABC.3. Đường tròn có tâm đối xứng, trục đối xứng không? Chỉ rõĐáp ánCâu hỏi: Cho đường tròn tâm O, bán kính R.Trong các dây của đường tròn, dây lớn nhất là dây như thế nào? Dây đó có độ dài bằng bao nhiêu?* Để trả lời được câu hỏi này các em hãy so sánh độ dài của đường kính với các dây còn lại. Để biết được điều đó. Hôm nay thầy và các em cùng tìm hiểu bài mới.Tiết 20 §2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN1. So sánh độ dài của đường kính và dâyBài toán: Gọi AB là một dây bất kì của đường tròn (O;R). CMR AB 2RABGiải: Trường hợp AB là đường kính (HV 1).HV1 Trường hợp dây AB không là đường kính (HV2)HV2Xét tam giác ABC, ta có AB < AO + OB = R + R = 2RVậy ta luôn có AB 2R * Định lí 1: Trong các dây của một đường tròn, dây lớn nhất là đường kính.Ta có AB = 2RTiết 20 §2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN1. So sánh độ dài của đường kính và dâyBài toán1:Gọi AB là một dây bất kì của đường tròn (O;R). CMR AB 2R* Định lí 1: Trong các dây của một đường tròn, dây lớn nhất là đường kính.2. Quan hệ vuông góc giữa đường kính và dâyBài toán 2:Cho đường tròn (O), đường kính AB vuông góc với dây CD. CMR đường kính AB đi qua trung điểm của dây CD.CDGiải: Trường hợp CD là đường kính: Hiển nhiên AB đi qua trung điểm O của CD (HV3)Trường hợp CD không là đường kính (HV4).CDI* Định lí 2: Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.Gọi I là giao điểm của AB và CD.Δ OCD có OC = OD (b.kính) nên nó là Δ cân tại O, OI là đường cao nên cũng là đường trung tuyến, do đó IC = ID. Tiết 20 §2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN1. So sánh độ dài của đường kính và dây* Định lí 1: Trong các dây của một đường tròn, dây lớn nhất là đường kính.2. Quan hệ vuông góc giữa đường kính và dây* Định lí 2: Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.Câu hỏi ?Đường kính đi qua trung điểm của dây có vuông góc với dây đó không?AB Đường kính đi qua trung điểm của một dây có vuông góc với dây đó.(H.5)AB Đường kính đi qua trung điểm của một dây không vuông góc với dây ấy.(H.6)* Định lí 3: Trong một đường tròn,đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. H.5H.6?2Cho HV. Hãy tính độ dài dây AB, biết OA = 13cm, AM = MB, OM = 5cmGiảiCó dây AB là dây không đi qua tâm, MA = MB (gt) OM AB (đ/l quan hệ vuông góc giữa đường kính và dây).Xét tam giác vuông AOM có: (đ/l py-ta-go)Tiết 20 §2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN1. So sánh độ dài của đường kính và dây* Định lí 1: Trong các dây của một đường tròn, dây lớn nhất là đường kính.2. Quan hệ vuông góc giữa đường kính và dây* Định lí 2: Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.* Định lí 3: Trong một đường tròn,đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. Bài toán: Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB.Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH= DKGiảiTứ giác ABCD là hình thang vì AH//BK do cùng HK. Xét hình thang AHKB có AO=OB=R, OM//AH//BK (cùng HK) OM là đường trung bình của h.thang. Vậy MH = MK (1).Có OM CD MC = MD (2) (đ/l quan hệ giữa đường kính và dây).Từ (1) và (2) MH – MC = MK – MD CH = DK.TIẾT HỌC ĐẾN ĐÂY ĐÃ KẾT THÚCXIN CHÂN THÀNH CẢM ƠN QUÍ THẦY CÔ CÙNG CÁC EM HỌC SINHGV: Võ Hoàng Hiển
File đính kèm:
- DUONG KINH DAY CUNG.ppt