Cách tìm nhân tử chung với các đa thức có hệ số nguyên:
- Hệ số của nhân tử chung chính là ƯCLN của các hệ số nguyên dương của các hạng tử.
- Luỹ thừa bằng chữ của nhân tử chung phải là luỹ thừa có mặt trong tất cả các hạng tử của đa thức, với số mũ là số mũ nhỏ nhất của nó trong các hạng tử.
11 trang |
Chia sẻ: tuandn | Lượt xem: 1277 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng Đại số 8 - Tiết 9: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
KIỂM TRA BÀI CŨ 2/. Áp dụng: 54 54 74 26 . . + 54 ( ) 100 5400 = 74 + 26 = 54 . = Tính nhanh a ( b + c ) = ………………………………..…. a . b + a . c 1/. Hãy điền vào chỗ trống trong công thức sau: Tiết 9: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG x x x 2 1/. Ví dụ: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đơn thức và đa thức. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung Ví dụ 1: Hãy viết 2x2 -4x thành một tích của những đa thức. Giải Ví dụ 2: Phân tích đa thức 15x3 – 5x2 + 10x thành nhân tử. Giải 15x3 -5x2 + 10x Cách tìm nhân tử chung với các đa thức có hệ số nguyên: - Hệ số của nhân tử chung chính là ƯCLN của các hệ số nguyên dương của các hạng tử. - Luỹ thừa bằng chữ của nhân tử chung phải là luỹ thừa có mặt trong tất cả các hạng tử của đa thức, với số mũ là số mũ nhỏ nhất của nó trong các hạng tử. 2/. ÁP DỤNG: Phân tích các đa thức sau thành nhân tử: a/. x 2 x _ = x ( x 1 ) _ b/. x 2 (x – 2y) 5 15 x (x – 2y) – = c/. 3 (x – y ) 5 (y – x ) y 3 5 y (x – y ) (x – y ) – = – [ ] – 3 5 y (x – y ) (x – y ) = + 3 5 y (x – y ) = + ( ) Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử. Lưu ý đến tính chất: A = – (– A ) và A – B = – (B – A) ?1 Tìm x, biết: 3 x 2 – 6 = 0 x 3 ( x x 2 0 ) – = 3 x 0 = Hoặc x 2 – 0 = x 0 = x = 2 Vậy: x = 0 hoặc x = 2 Để tìm x dạng A(x) = 0 (với A là đa thức của biến x) ta làm theo các bước sau: Bước 1: Phân tích đa thức A(x) thành nhân tử Bước 2: Cho mỗi nhân tử bằng không và tìm x Bước 3: Kết luận ?2 3. LUYỆN TẬP Bài 39: (SGK/19) Phân tích các đa thức sau thành nhân tử. b) c) d) e) Bài 40: SGK/19 Tính giá trị của biểu thức. b) tại x = 2001 và y = 1999 Giải b) Thay x = 2001 và y = 1999 vào biểu thức ta có: Hướng dẫn học sinh tự học ở nhà: - Xem lại các bước khi phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung - Xem lại các dạng toán đã làm - Làm các bài tập: 39, 40(b), 41 SGK/19 - Xem trước bài: “Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức”
File đính kèm:
- phan tich da thuc bang pp nhom.ppt