Bài giảng Đại số 11: Luyện tập hàm số liên tục
I. Kiểm tra bài cũ
1Pp chứng minh hàm số liên tục tại một điểm . (3điểm)
2) Xét tính liên tục của hàm số sau tại điểm x=2 (6điểm)
Bạn đang xem nội dung tài liệu Bài giảng Đại số 11: Luyện tập hàm số liên tục, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
I. Kiểm tra bài cũPp chứng minh hàm số liên tục tại một điểm . (3điểm) 2) Xét tính liên tục của hàm số sau tại điểm x=2 (6điểm)Với Với f lt tại f lt trên (a,b) f xd tại a,b f lt trên [a,b] Ít nhất 1 điểm c thuộc (a,b) thoả f(c )=M f(a).f(b)1Bài 50b)Cmr các hàm số sau liên tục trên tập xác định của nóBài 53 Cmr pt có ít nhất 1nghiệm âm lớn hơn -1 Bài 54 Cho hs a) Chứng tỏ;f(-1).f(2)<0b)Chứng tỏ:pt f(x)=0 không có nghiệm nào thuộc khoảng (-1,2)c)Điều khẳng định ở b) có mâu thuẫn với định lí 2 không?Bạn A giải như sau:+TXD: D=R+ f(2)= 4a2+Để hàm số f liên tục tại x=2 thìSuy ra Vậy hàm số f liên tục tại 2, với mọi a thuộc RBài 1. Tìm số thực a sao cho hàm số f liên tục tại x=2Bạn A giải đúng không?Vì sao?(đúng với mọi a thuộc R)Học sinh B giải như sau:+Đặt f(x)=+Ta có f liên tục trên RSuy ra, f liên tục trên đoạn [-1000,0] Theo hệ quả, suy ra có ít nhất 1 nghiệm âm Bài 2. Chứng minh rằng phương trìnhcó ít nhất 1 nghiệm âm.Bài giải này có đúng chưa?Dặn dòNội dung kiểm tra 1 tiết sắp tới:Giới hạn dãy số (2 bài):3 điểmTổng cấp số nhân lùi vô hạn: 1 điểm.Giới hạn hàm số (3 bài) :4,5 điểmHàm số liên tục (tại 1 điểm):(1,5 điểm) Chóc c¸c thÇy, c« gi¸o m¹nh khoÎ, h¹nh phóc.Chóc c¸c em häc giái, ch¨m ngoan.
File đính kèm:
- luyen tap Ham so lien tuc.ppt